build details

Show: section status errors & todos local changes recent changes last change in-page changes feedback controls

Measuring performance

Modified 2018-10-12 by Andrea Censi

Measuring performance in robotics is less clear cut and more multidimensional than traditionally encountered in machine learning settings. Nonetheless, to achieve reliable performance estimates we assess submitted code on several episodes with different initial settings and compute statistics on the outcomes. We denote $\objective$ to be an objective or cost function to optimize, which we evaluate for every experiment. In the following formalization, objectives are assumed to be minimized.

In the following we summarize the objectives used to quantify how well an embodied task is completed. We will produce scores in three different categories:

Note that the these objectives are not merged into one single number.

Because of mathjax bug

No questions found. You can ask a question on the website.