
ZHandsHands-on R-on Robotics Devobotics Development using Duckietelopment using Duckietownown

This courses teaches the practicalities of programming robots. At the end, you will
know how to write and deploy simpleagentson your Duckiebot.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/00_00_title.md

ContContentsents

PPartart AA -- [RH1] Connecting and oper[RH1] Connecting and operating a Duckiebotating a Duckiebot......................................33
ÿ UnitUnit AA-1-1 - Assembly duckumentationAssembly duckumentation..44

ÿ UnitUnit AA-2-2 - TTerminal basicserminal basics..55

ÿ UnitUnit AA-3-3 - Duckiebot SetupDuckiebot Setup..66

ÿ UnitUnit AA-4-4 - NNetwetworking basicsorking basics..88

ÿ UnitUnit AA-5-5 - DockDocker basicser basics..1313

ÿ UnitUnit AA-6-6 - Basic Duckiebot operBasic Duckiebot operationation ..1919

PPartart BB -- [RH2] Basic Dev[RH2] Basic Developmentelopment..2121
ÿ UnitUnit BB-1-1 - Git and GitHubGit and GitHub..2222

ÿ UnitUnit BB-2-2 - Python prPython progrograms and enams and envirvironmentsonments..2424

ÿ UnitUnit BB-3-3 - Become a DockBecome a Docker Per Powowerer-User-User..3232

ÿ UnitUnit BB-4-4 - AIDO submissionsAIDO submissions..3636

ÿ UnitUnit BB-5-5 - CrCreating Dockeating Docker containerser containers..3838

PPartart CC -- [RH3] A[RH3] Advdvanced Softwanced Softwarare Deve Developmentelopment..4444
ÿ UnitUnit C-1C-1- IntrIntr oduction toduction to Ro ROSOS..4545

ÿ UnitUnit C-2C-2- DevDevelopment in the Duckietelopment in the Duckietown infrown infrastructurastructuree..5050

ÿ UnitUnit C-3C-3- WWorking with logsorking with logs..6767

ÿ UnitUnit C-4C-4- RRobot behaobot behaviour with Rviour with ROSOS..7272

PPartart DD -- [RH4] Implementing Basic R[RH4] Implementing Basic Robot Behaobot Behaviorsviors7474
ÿ UnitUnit DD-1-1 - DuckietDuckietown code structurown code structuree..7575

ÿ UnitUnit DD-2-2 - DevDeveloping new Duckiebot functionalityeloping new Duckiebot functionality..8080

�

Z

PPARARTT AA

[RH1] Connecting and oper[RH1] Connecting and operating a Duckiebotating a Duckiebot

This part will tak e you through the most basic hardware and software skills you need
in Duckietown. You will start fr om building your Duckiebot and learning the most fre-
quently used terminal commands and go all the way to running your ýrst Duckiebot
demos!

ContContentsents

UnitUnit AA-1-1 - Assembly duckumentationAssembly duckumentation..44

UnitUnit AA-2-2 - TTerminal basicserminal basics..55

UnitUnit AA-3-3 - Duckiebot SetupDuckiebot Setup..66

UnitUnit AA-4-4 - NNetwetworking basicsorking basics..88

UnitUnit AA-5-5 - DockDocker basicser basics..1313

UnitUnit AA-6-6 - Basic Duckiebot operBasic Duckiebot operationation..1919

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/00_title.md

Z

Z

Z

UUNITNIT AA-1-1

Assembly duckumentationAssembly duckumentation

We have prepared detailed instructions on how to build your Duckiebot, and, if you
need, a whole Duckietown! Here, we will guide you to the relevant parts of the book
that contain the speciýc instructions. Once you are done, you can continue with the
next module.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Hardware

RResults:esults:Know how to build Duckiebots and Duckietowns.

RResults:esults:Know where to ask for help.

ContContentsents

Section1.1- Assembling the Duckiebot..44

1.1.1.1.Assembling the DuckiebotAssembling the Duckiebot
The content of the Duckiebox including a detailed set of instructions can be found in
the assembly instructions. It is advisable to read through our hardware preliminaries
section before you get your hands on your own Duckiebot.

The assembly instructions as well as the hardware preliminaries are part of the exten-
sive documentation on Duckietown, which we refer to as theÒDuckumentationÓ. The
Duckumentation is an open-source set of documents that explains everything you need
in order to ýnd your way around the Duckietown universe.

If you cannot ýnd the answer to a speciýc question you have, you can join our interna-
tional Slack workspace. There you can ask the community about anything. When you
sign up, please add your aþliation. It is alw ays a pleasure to see Duckietown spreading
around the world, and we are curious to ýnd out where our new members come from.

If you run int o any issues during the assembly, there are diÿerent ways to ýnd help.
First, you can look at the FAQ sections that are on some pages of the Duckumentation.
If this does not help you and you need further assistance, let us know viaSlack.

ExExerercisecise1.1.Duckiebot assemblyDuckiebot assembly..
Assemble the hardware of your Duckiebot according to theassembly instructions.

�

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/01_assembly.md
https://get.duckietown.org/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/01_assembly.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/assembling_duckiebot_db18.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/db_opmanual_hw_prel.html
https://docs.duckietown.org/daffy/
https://duckietown.slack.com/
/tmp/mcdp_tmp_dir-root/prince_renderz6c9th18/slack
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/01_assembly.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/assembling_duckiebot_db18.html

Z

Z

Z

UUNITNIT AA-2-2

TTerminal basicserminal basics

Working over the terminal is a skill that every roboticist-to-be needs to acquire. It en-
ables you to work on remote agents or computers without the need for a graphical user
interface (GUI) and lets you work very eþciently . Once you get the hang of it, you will
ýnd out for yourself how it can make your life easier.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Laptop setup

RRequirequires:es:Duckietown account

RResults:esults:Know how to use a terminal

ContContentsents

Section2.1- Using a terminal..55

Section2.2- Using the Duckietown Shell..55

2.1.2.1.Using a tUsing a terminalerminal
If you are completely new to working with a t erminal, often also called ÒconsoleÓ or
Òcommand lineÓ, a beginners tutorial can be foundhere. It makes sense to get to know
the terminal very well, as this will save you a lot of time along the way.

If you are looking for an extensive list of commands that can be used from the terminal,
this is the place to look at.

2.2.2.2.Using the DuckietUsing the Duckietown Shellown Shell
The Duckietown Shell, or BRQ for short, is a pure Python, easily distributable (few de-
pendencies) utility for Duckietown.

The idea is that most of the functionalities are implemented as Docker containers, and
BRQ provides a nice interface for that, so that users should not type a very long dock-
er run command line. These functionalities range from calibrating your Duckiebot and
running demos to building the duckumentation and submitting and evaluating for AI-
DO. You will ýnd the commands that you need along the way during the next steps.

If you followed all the steps in thelaptop setup, you already installed BRQ. If not, now
is the time to go back and do it.

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/02_terminal_basics.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/dt_account.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/02_terminal_basics.md
https://tutorials.ubuntu.com/tutorial/command-line-for-beginners#0
https://ss64.com/bash/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/02_terminal_basics.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html

Z

Z

Z

Z

UUNITNIT AA-3-3

Duckiebot SetupDuckiebot Setup

Major eÿorts were made to make sure that the setup of your Duckiebot is as comfort-
able as possible for you. We created a set of instructions for initialization and calibra-
tion through which we will guide you here.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:an assembled Duckiebot.

RResults:esults:A Duckiebot that is ready to operate in Duckietown.

ContContentsents

Section3.1- Initialization ..66

Section3.2- Make your Duckiebot move..66

Section3.3- See what your Duckiebot sees..66

Section3.4- Calibration..77

3.1.3.1.InitializationInitialization
First of all, you have to üash your SD card. Here you have the possibility to give your
duckiebot a name and choose what network to connect to. We experienced people hav-
ing issues when they called their DuckiebotBSAIGC@MR, so make sure to ýnd a creative
name that is diÿerent from that.

Follow the initialization instructions here.

3.2.3.2.MakMake ye your Duckiebot movour Duckiebot movee
As soon as you ýnished the initialization part successfully, it is time to make your
Duckiebot move. Follow the instructions here to ýnd out how you can maneuver your
Duckiebot using your computer keyboard. This is also the moment to check whether
you did a good job at wiring your motors. If your Duckiebot does not behave as you tell
him to, this is probably due to the fact that some wires are crossed.

NNotote:e: If this is the ýrst time that y ou try to make your Duckiebot move, give it some
time. It might take some time until the joystick pops up on your screen.

3.3.3.3.See what ySee what your Duckiebot seesour Duckiebot sees
There is another key component missing now: the image stream from the camera. To
ýnd its way around in the city, a Duckiebot needs to be aware of what is going on
around him and where he is allowed to drive and where not. To see the image stream
from your Duckiebot, follow the instructionshere.

	

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/setup_duckiebot.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/rc_control.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/read_camera_data.html

Z

Z

Z

Z

3.4.3.4.CalibrCalibrationation
As with every real-world system, the hardware of the Duckiebot is always a little diÿer-
ent. The ÒsameÓ cameras or motors that you can buy oÿ the shelf will never be exactly
the same. Additionally, the camera might have been mounted in a slightly diÿerent ori-
entation than it was supposed to. But donÕt worry, this is what we are going to take care
of in this step.

We have two calibration procedures for the Duckiebot: one for the camera and one for
the motors.

1)1) CamerCamera calibra calibrationation

The camera calibration procedure consists of two parts: the ýrst one is the intrinsic
camera calibration. It accounts for the diÿerences between each camera and is there-
fore only dependent on the camera itself. If you did the intrinsic calibration, make sure
to not play around with the lens of the camera anymore as it will invalidate the intrinsic
calibration.

The second part is the extrinsic camera calibration. It accounts for the positioning of
the camera relative to its environment (i.e. how you mount it on the Duckiebot). So if
you mounted the camera at a slight angle with respect to the driving direction this part
accounts for it.

Follow the instructions here to calibrate the camera of your Duckiebot.

For more detailed background information check outthis link .

ExExerercisecise2.2.CalibrCalibrationation..
During the camera calibration, the Duckiebot will run an automatic veriýcation on
the camera calibration. Check if the projection of the street on the actual picture ýts.
If it doesnÕt you have to redo the extrinsic calibration.

2)2) Wheel calibrWheel calibrationation

The Duckiebot uses adiÿerential drive. Going forward in a straight line therefore de-
pends on the motors turning at the exact same speed. As in reality every motor is slight-
ly diÿer ent, we have to account for these imprecisions using a wheel calibration proce-
dure. In Duckietown we are currently using again-trim approachfor that.

Follow the instructions here to run through the calibration procedure with your Duck-
iebot and help him drive straight.

� ������ �� �� ����

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/camera_calib.html
https://github.com/duckietown/lectures/blob/master/1_ideal/25_computer_vision/cv_calibration.pdf
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
https://docs.duckietown.org/DT19/learning_materials/out/duckiebot_modeling.html
https://docs.duckietown.org/DT19/learning_materials/out/odometry_calibration.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/wheel_calibration.html

Z

Z

Z

UUNITNIT AA-4-4

NNetwetworking basicsorking basics

Networking is extremely vital in Duckietown. And we donÕt mean the networking
events where duckies socialize (these are pretty fun), but rather the computer networks
between the bots, your computers and the rest of the Duckietown equipment. These
networks allow us to do some pretty cool stuÿ, like controlling your Duckiebot from
your laptop or creating a centralized observation center that combines the video
streams of all watchtowers. NetworkingÕs usefulness is only comparable with its com-
plexity. Indeed, this is often the source of most confusion and problems for Duckietown
newbies. That is why we will try t o clarify as many things as we can from the very be-
ginning.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Laptop setup.

RRequirequires:es:Duckiebot initialization .

RResults:esults:Fundamental networking knowledge.

ContContentsents

Section4.1- Why do we care about networking in the ýrst place?......................................88

Section4.2- How do computer networks work?..88

Section4.3- Connecting to your Duckiebot ..1111

4.1.4.1.WhWhy do wy do we care care about netwe about networking in the forking in the first place?irst place?
Your Duckiebot, just like your computer or your phone, is a network device and you
connect to it thr ough the network. You probably want to control it without ha ving to
attach a screen, a keyboard and a mouse to it, that would defeat the whole ÒautonomyÓ
goal. In more complex projects, one computer can also be used to control dozens of de-
vices at a time. And in one of the most challenging undertakings that we have attempt-
ed so far, we connect 50+ watchtowers into a single mega-hive. All this is enabled by
smartly conýgured computer networks!

4.2.4.2.How do computHow do computer netwer networks works work?ork?
A local network is setup with a router at the center, that allows all devices that connect
to it to ýnd each other and communicate. The role of the router is to direct (route)
packages from a sender to a receiver. In big networks you cannot physically connect all
devices to a single router. In this case, you can useswitchesto combine the network
traþc fr om a number of devices onto a single connection to a router. The router must
know which device is which and where to ýnd it. To facilitate their communication,
the router and the rest of the devices useIP and MAC addresses.

�

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/setup_duckiebot.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md

The MAC addressis related to your hardware itself, to your computer (or more accu-
rately, to the network int erface). This means that it remains the same even if you move
to the other end of the world and connect to a diÿerent network. If your computer sup-
ports both a WiFi and an Ethernet connection, then each one has a diÿerent MAC ad-
dress. The MAC address is of the form:�B�����A�?���B��� , with each symbol being a
hexadecimal (��� � ?�D). More importantly, MAC addresses are unique: there is no
other device in the world with the same MAC address as the WiFi adapter in your lap-
top. You can consider it as a citizen number: it is unique personal identiýer. That makes
MAC addresses extremely useful for routing messages reliably.

While MAC addresses have the beneýt of stability, they are very clumsy to work with,
imagine that every time you want to send a letter to your friend you need to write down
their citizen number. And also imagine you are the mailman: it is very diÿerent to de-
liver mail if you donÕt know where the person lives. Computers use IP addresses to han-
dle these problems.

The IP addressof a device is relative to the network it liv es in. It is a sequence of num-
bers that are uniquely mapped to devices inside the network. It is coded on 32 bits.
Most home networks use the range of IP from ����������� to ������������� , so you
may have seen the numbers before. The structure of the IP address shows the hierarchi-
cal nature of the network architecture. This address will change as soon as you change
network, and it is assigned by the network administrator. Typically this is handled by
a DHCP server which, in most home networks is part of the router. In a local network,
all addresses use the same subnetwork, which means that the ýrst 24 bits of it are the
same. If my IP is ������������ , then my subnetwork is ���������� 345 . This makes
it easy to determine which devices are on the same local network as me, as then the
router can directly deliver my messages. If you are trying to connect to a device outside
your local network (e.g., on the Internet), the router will need to ýnd a way to deliver
the message to it.

This concept is actually quite important. Your router will give you the address of any
device on your local network, such that you can connect to it, but does not work for re-
sources on the Internet, for example, BMAQ�BSAIGCRMUL�MPE. Therefore, instead, it acts
as an intermediary between your device and the Internet. The technical term for that
is gateway. The router will mask any request that comes from you as if it comes from
the router itself, and once it gets a reply from the remote server, it forwards that back to
your device.

Even though using IP addresses is very convenient for computers, humans do not han-
dle them that well. They change from time to time and are hard to memorize. Instead,
we prefer to name our devices with memorable names such asOS?AI?@MRor BSAI�

GCA?P. These names are calledhostnamesand you should have picked one for your
Duckiebot when you initialized it. In Duckiet own, we mostly use the hostnames for
connecting to devices. However, the ability to ýnd a device by hostname is non-stan-
dard and requires a protocol calledmulticast DNS(mDNS).

NNotote:e:This mDNS protocol works by default on most home or oþce networks, but is
blocked on large corporate networks like the ones of universities. If you have issues
connecting to your Duckiebot thourgh the hostname, that is the most likely reason
and you should ýrst check with your network provider if mDNS is indeed blocked.

���!������ � ����� �

https://en.wikipedia.org/wiki/MAC_address
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Multicast_DNS

Z

Z

Z

ExExerercisecise3.3.NNetwetwork utilitiesork utilities ..
Now we will discuss some useful tools that can help understand the network on
which you are.

There is nothing simpler than ýnding your hostname: simply typeFMQRL?KCin a ter-
minal. Now, make sure you are connected to a network ýrst.

We can use theGDAML[E command to ýnd some properties of this network. Open a
terminal and type the command GDAML[E. You might be missing the package that
provides this command. If that is the case, install it and try again.

The GDAML[E command outputs a few paragraphs, one for each network int erface.
You typically will ýnd one called something like UJ?L� (your wir eless interface) and
another one called CRF� (your Ethernet interface). Look at the one through which
you are connected at the moment. After the keyword GLCR you should see your IP
address and after the keyword CRFCPor '6?BPCQQ you should get the MAC address
of this interface.

Can you determine what is your sub-network? How many devices can you put on
this sub-network?

Now that you know what your network is, it is time to explore the devices on it. There
are many ways to do this. If you know about a device that should be connected, like
your Duckiebot, then you can directly try to ýnd it. To do so, you can try to ping it. This
will just ÒpokeÓ the device to see if it is on the network and it is responsive to the pok-
ing. You can ping by IP address and a hostname. Pinging by IP address always works if
a device is connected to the network. Pinging by hostname requries that mDNS is en-
abled, therefore if that fails it could mean that either your device is not connected, or
that the mDNS traþc is being blocked on your network.

ExExerercisecise4.4.PingPing..
Open a terminal. Run NGLE *.7-$,(, where FMQRL?KCis your DuckiebotÕs host-
name. Does it work? What is the output? Now try NGLE *.7-$,(�JMA?J instead.
Does this work? For the router to ýnd a device with its hostname, it needs to know
that the hostname is in the local network, not somewhere else on internet. In con-
trast, try to ping a server outside of the local network: NGLE EMMEJC�AMK. You can
stop pinging the Duckiebot by pressing "31+�" .

Now, when you pinged your Duckiebot, did you notice that there was an IP address
in the output? Is it yours? No! It is the IP of the Duckiebot! You can now use this IP
address and try pinging with it. Do you need to add the �JMA?J this time? Can you
ýgure out why?

This part will be very important for a lot of the things you will do in Duckiet own.
When a command involving your Duckiebot doesnÕt work, the ýrst thing t o try is to
ping it and make sure it is still accessible.

ExExerercisecise5.5.NMapNMap..
We can now investigate what is on our network by using one of the many network
mapping tools that exist out there. Keep in mind that depending on the network and

�� ���!������ � �����

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md

Z

Z

the devices on it, you might not be able to see every device and every parameter.

Since you know your IP address, you also know your sub-network. Using the tool
LK?N , we are going to search the whole sub-network. Try to run LK?N �Q/ "���

�� ��� in a terminal. The ��� part tells LK?N to keep the 24 ýrst bits the same in
its search. If you donÕt put it, then nmap will search the complete space of address
(which are the monstrous 2^32 addresses).

The output should give you the list of all devices connected to your network, with
their IP addresses and most of the time their hostnames. This way, you found your
hostname and its IP, as well as other potentially present Duckiebots or computers.

4.3.4.3.Connecting tConnecting to yo your Duckiebotour Duckiebot
Now that we know what our local network is and how it works, we can this information
to gain access to Duckiebots. The industry standard way of connecting to remote de-
vices is a protocol known asSSH(Secure SHell). Then name describes it quite well: just
in the same way that you can run shell commands on your computer in the terminal
you can run shell commands, in a secure way, on a remote device. In this case, the re-
mote device will be your Duckiebot.

ExExerercisecise6.6.SSHSSH..
LetÕs connect to our Duckiebot via SSH. Open a terminal and type QQF 21(0�

-$,(� *.7-$,(�JMA?J . The username and hostname should be the ones you sup-
plied when you üashed your card. If you didnÕt set a username, then it should be the
default value of BSAIGC. If you are prompted to enter a password, again use the one
you set when üashing, or if you didnÕt use the defaultOS?AIOS?AI password.

Now your terminal is not in your computer anymore but on the Duckiebot. Did the
text before the place where you can enter you command change? Why? What do
these things there mean?

You should now be in a shell in the Duckiebot. Try to move around with t erminal
commands like AB and JQ , as explained in the terminal basics. Verify that these are
not the directories and ýles you ýnd on your computer. They actually are the ones
on your robot.

Repeating the steps from one of the previous exercises, ýnd the MAC address of your
Duckiebot.

Once you are ready, you can exit the session on the Duckiebot and return to your
computer by simply typing CVGRor by pressing "31+�# .

You can connect to your bot without having to type a password (maybe that was already
the case). This is done by using SSH keys (aprivate and apublic one). You donÕt know
this yet, but when you üashed the SD card on your computer, it added an SSH key to
your computer and to the Duckiebot. With this, the Duckiebot recognizes your com-
puter and wonÕt ask for a password. On your computer, the key is in Y��QQF , and it is
called #3��=ICW=�� . If you in fact try to QQF in a Duckiebot on the network that was
not üashed on your computer, you will have to know the password.

���!������ � ����� ��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md

ZExExerercisecise7.7.SSH kSSH keyseys..
Open a new terminal and navigate to Y��QQF and open the ýle namedAML[E . What
is in there? It is a list of know agents mapped with the key to use. When you run QQF

*.7-$,(ssh will directly use the key and the provided Linux username (BSAIGC

by default).

�� ���!������ � �����

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md

Z

Z

UUNITNIT AA-5-5

DockDocker basicser basics

If you are frequent user of Python, you have probably experienced that making your
projects portable can sometimes be quite diþcult. Y our code might work only on a spe-
ciýc version of Python and requires speciýc versions of some particular libraries. But
how can you make sure that the users of your code have the same installed? Thankful-
ly, the Python community has develped wonderful tools to manage that, such asvirtual
environments and PyPI. Unfortunately, these tools stop short of extending their con-
venice outside the Python world. What about your parameters, libraries, packages writ-
ten in diÿerent languages, binary executables, system conýgurations, and anything else
that your code might need to run correctly? How do you make sure your user has all of
this setup correctly? And what if you want this to work accross diÿerent hardware and
operating systems? How diþcult can achieving true portability be? In fact, it turns out,
this is an engineering task that has taken thousands of the worldÕs brightest developers
many decades to implement!

Thanks to the magic ofcontainer technologywe can now run any Linux program on al-
most any networked device on the planet. All of the environment preparation, installa-
tion and conýguration steps can be automated from start to ýnish. Depending on how
much network bandwidth you have, it might take a while, but thatÕs all right. All y ou
need to do is type a single command string correctly.

Docker is a tool for portable, reproducible, and self-contained computing. It is used
to perform operating-system-level virtualization, something often referred to ascon-
tainerization. While Docker is not the only software that does this, it is by far the most
popular one.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Laptop setup

RResults:esults:The very basic knowledge of using Docker

ContContentsents

Section5.1- WhatÕs so special about containerization?..1313

Section5.2- What is it in a Docker container?..1515

Section5.3- Working with Docker images..1515

Section5.4- Working with containers..1616

5.1.5.1.WhatÕWhatÕs so special about containerization?s so special about containerization?
A (Docker) container is a packaging around all the software (libraries, conýguration
ýles, services, binary executable, etc.) that a computer needs to run a program. And
by all, we donÕt simply mean the source code or the dependencies, we really mean all.
Everything you need, from the lowest level OS components to the user interface. A con-

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/05_docker_basics.md
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://pypi.org/
https://en.wikipedia.org/wiki/OS-level_virtualisation
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/05_docker_basics.md

tainer does not care what üavor or release of Linux you try to run it on, it has every-
thing it needs to work everywhere inside it (it is a container, afterall). Not to mention
that Linux Docker containers can generally be also executed on Mac OS and Windows
as well!

Containerization is a process that allows partitioning the hardware and the core soft-
ware (the kernel) of an operating systems in such a way that diÿerent containers can co-
exist on the same system independently from one-another. Programs running in such a
container have access only to the resources they are allow to and are completely inde-
pendent of libraries and conýgurations of the other containers and the host machine.
Because of this feature, Docker containers are extremelyportable.

Containers are often compared to virtual machines (VMs). The main diÿerence is that
VMs require a host operating system (OS) with a hypervisor (another program) and a
number of guest OS, each with their own libraries and application code. This can result
in a signiýcant overhead. Imagine running a simple Ubuntu server in a VM on Ubuntu:
you will have most of the kernel libraries and binaries twice and a lot of the processes
will be duplicated on the host and on the guest. Containerization, on the other hand,
leverages the existing kernel and OS, keeps track of what you already have and adds on-
ly the additional binaries, libraries and code necessary to run a given application. See
the illustration below.

(a) Using containers (b) Using VMs

Figure 5.1.Comparison between containers and VMs (from docker.com)

Because containers donÕt need a separate OS to run they are much more lightweight
than VMs. This makes them perfect to use in cases where one needs to deploy a lot
of independent services on the same hardware or to deploy on not-that-powerful plat-
forms, such as a Raspberry Pi - the platform Duckiebots use.

Containers allow for reuse of resources and code, but are also very easy to work with
in the context of version control. If one uses a VM, they would need to get into the VM
and update all the code they are using there. With a Docker container, the same process
is as easy as pulling the container image again.

The same feature makes Docker containers great for development. If you mess up a
conýguration or a library in a container, all you need to do to ýx it is, stop it, remove
it, and try again. There is no trace left on your system and you cannot break down your
OS by committing a simple stupid mistake in a container.

And the best part of it all, Docker containers are extremely portable. That means, that
once you package your mindbogglingly-awesome Duckiebot code as a Docker contain-
er, you can very easily share it with your friends and anyone else in the world, who
would be able to try it on their own r obot with a single line in the terminal. Just as

�� � ����� � �����

https://en.wikipedia.org/wiki/Virtual_machine
https://docs.docker.com/get-started/

Z

Z

easily you can test it in simulation or even submitting for competing in the AI Driving
Olympics!

5.2.5.2.What is it in a DockWhat is it in a Docker container?er container?
You can think of Docker containers as objects built from Docker images which in turn
are built up of Docker layers. So what are these?

Docker images are build-time constructs while Docker containers are run-time con-
structs. That means that a Docker image is static, like a �XGN or �GQM ýle. A container
is like a running VM instance: it starts from a static image but as you use it, ýles and
conýgurations might change.

Docker images are build up from layers. The initial layer is the base layer, typically an
oþcial stripped-down version of an OS. For example, a lot of the Docker images we run
on the Duckiebots have PNG�PMQ�IGLCRGA�@?QCas a base.

Each layer on top of the base layer constitutes a change to the layers below. The Docker
internal mechanisms translate this sequence of changes to a ýle system that the con-
tainer can then use. If one makes a small change to a ýle, then typically only a single
layer will be changed and when Docker attempts to pull the new version, it will need to
download and store only the changed layer, saving space, time and bandwidth.

In the Docker world images get organized by their repository name, image nameand
tags. As with Git and GitHub, Docker images can be stored in image registers that re-
side on the Internet and allow easy worldwide access to your code. The most popular
Docker register is calledDockerHub and it is what we use in Duckietown.

A Duckietown image stored on DockerHub has a name of the formBSAIGCRMUL�PNG�

PMQ�IGLCRGA�@?QC�B?DDW. Here the repository name is BSAIGCRMUL, the image name is
PNG�PMQ�IGLCRGA�@?QC, and the tag isB?DDW.

All Duckiet own-related images are in the BSAIGCRMULrepository. The images them-
selves can be very diÿerent and for various applications.

Sometimes a certain image might need to have several diÿerent versions. These can be
designated with tags. For example, the B?DDWtag means that this is the image to be
used with the B?DDWversion of the Duckietown code base.

It is not necessary to specify a tag. If you donÕt, Docker assumes you are interested in
the image with J?RCQRtag, should such an image exist.

5.3.5.3.WWorking with Dockorking with Docker imager imageses
We will now take a look at how you can use Docker in practice. For this, we assume you
have already set up Docker on your computer as explained in the Laptop Setup page.

If you want to get a new image from a Docker register (e.g., DockerHub) on your local
machine then you have to pull it. For example, you can get an Ubuntu 18.04 image by
running the following command:

� BMAICP NSJJ JG@P?PW�S@SLRS������

� ����� � ����� ��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/05_docker_basics.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/05_docker_basics.md

Z

You will now be able to see the new image you pulled if you run:

� BMAICP GK?EC JGQR

Just like that you got a whole new OS on your computer with a single line in the termi-
nal!

If you donÕt need this container, or if youÕre running down on storage space, you can
remove it by simply running:

� BMAICP GK?EC PK S@SLRS������

You can also remove images by their (, &$�(# as printed by theJGQRcommand.

If you want to look into the heart and soul of your images, you can use the commands
BMAICP�GK?EC�FGQRMPWand BMAICP�GK?EC�GLQNCARto get a detailed view.

5.4.5.4.WWorking with containersorking with containers
Containers are the run-time equivalent of images. When you want to start a container,
Docker picks up the image you specify, creates a ýle system from its layers, attaches all
devices and directories you want, ÒbootsÓ it up, sets up the environment, and starts a
pre-determined process in this container. All that magic happens with you running a
single command: BMAICP PSL. You donÕt even need to have pulled the image before-
hand, if Docker canÕt ýnd it locally, it will look for it on DockerHub.

HereÕs a simple example:

� BMAICP PSL S@SLRS

This will take the S@SLRSimage with latest tag and will start a container from it.

The above wonÕt do much. In fact, the container will immediately exit as it has nothing
to execute. When all processes of a container exit, the container exits as well. By default
this S@SLRSimage runs @?QFand as you donÕt pass any commands to it, it exits imme-
diately. This is no fun, though.

LetÕs try to keep this container alive for some time by using the�GR switch. This tells
Docker to create an interactive terminal session.

� BMAICP PSL �GR S@SLRS

Now you should see something like:

� PMMR������C@B�������

Keep in mind that the part after � (the containerÕs hostname) will be diÿerent - that is
your AMLR?GLCP�(# .

�	 � ����� � �����

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/05_docker_basics.md

In this manual, we will use the following icon to show that the command should be
run in the container:

� AMKK?LB RM @CPSL GL RFC AMLR?GLCP

You are now in your new S@SLRScontainer! Try to play around, you can try to use some
basic bash commands like JQ , AB, A?R to make sure that you are not in your host ma-
chine.

If you are sure about the diÿerence between the host and the container, you might want
to see what happens when you do PK �PD � IN THE CIN THE CONTONTAINERAINER. Do that extremely
carefully because that wipes out all of the root of a system. You do not want to run this
on your host. By running the above command in a Docker container you will destroy
the OS inside the container - but you can just exit and start another one. If instead you
have confused host and container, at this point you probably need to re-install your OS.

You can check which containers you are running using the docker NQcommand - anal-
ogous to the Linux NQ command. Open a new terminal window (do not close the other
one just yet) and type:

� BMAICP NQ

An alternative syntax is

� BMAICP AMLR?GLCPJGQR

These commands list all running containers.

Now you can go back to your S@SLRScontainer and typeCVGR. This will bring y ou back
to your host shell and will stop the container. If you again run the BMAICP NQcommand
you will see nothing running. So does this mean that this container and all changes you
might have made in it are gone? What about all these precious changes you made in it?
Are they forever lost into the entropy abyss of electric noise in your computerÕs memo-
ry? Not at all, BMAICP NQand BMAICP AMLR?GLCP JGQRonly list the currently running
containers.

You can see all containers, including the stopped ones with:

� BMAICP AMLR?GLCPJGQR �?

Here �? stands for all. You will see you have two S@SLRScontainers here (remember
the ýrst one that exited immediately?). There are two containers because every time
you use BMAICP PSL, a new container is created. Note that their names seem strangely
random. We could have added custom, more descriptive names, but more on this later.

We donÕt really need both of these containers, so letÕs get rid of one of them:

� BMAICP AMLR?GLCPPK AMLR?GLCPL?KC

� ����� � ����� �

You need to put your container name after PK. Using the container ID instead is also
possible. Note that if the container you are trying to remove is still running you will
have to ýrst stop it.

You might need to do some other operations with containers. For example, sometimes
you want to start or stop an existing container. You can simply do that with:

� BMAICP AMLR?GLCPQR?PR AMLR?GLCPL?KC
� BMAICP AMLR?GLCPQRMNAMLR?GLCPL?KC
� BMAICP AMLR?GLCPPCQR?PRAMLR?GLCPL?KC

Imagine you are running a container in the background. The main process is running
but you have no shell attached. How can you interact with the container? You can open
a terminal in it with:

� BMAICP ?RR?AF AMLR?GLCPL?KC

LetÕs start again the container that we stopped before. You can check its container ID
and name via BMAICP AMLR?GLCP JGQR �?. You can then start it again with command
intr oduced above. You will see that the docker start command will only print the con-
tainer ID and will r eturn you back to the terminal. Rather uneventful, huh? DonÕt wor-
ry, your container is actually running: check that withBMAICP�NQ.

But even though it is running, it seems you cannot do anything with it. But fear not,
use the BMAICP ?RR?AFcommand to get back in the containerÕs shell. Now youÕre back
in and ready for the next adventure.

Often, you will need to run multiple pr ocesses in a single container. But how could you
do that if you have only a single terminal? Well, Docker has a neat command for that:
BMAICP CVCA. The full signature of it is BMAICP CVCA ".-3 (-$1=- ,$�(# ".,, -# .
LetÕs use that to create a ýle in our Ubuntu container that is already running. Open a
new terminal and simply substitute the container name or ID in the signature above
and use the commandRMSAF �OS?AIUMPJBwhich should create an empty ýle called
OS?AIUMPJB in the containerÕs root. The full command should look like that:

� BMAICP CVCA A��CC�D���?� RMSAF�OS?AIUMPJB

Verify that the ýle was indeed created by running it again, but this time with the com-
mand JQ ; instead, which will show you the contents of the root folder. Finally, verify
that the change was made in the same container as the one to which you attached be-
fore by ýnding the ýle there and that the change was not made on your host by check-
ing that you donÕt have a ýle calledOS?AIUMPJB in your root folder.

�� � ����� � �����

Z

Z

Z

UUNITNIT AA-6-6

Basic Duckiebot operBasic Duckiebot operationation

Now that you know more about how to assemble a duckiebot, how to use a terminal,
how to set up a Duckiebot, how to handle a bit of networking and a bit of Docker, it
is high time you learn how to use the basic functionalities of the Duckiebot. In this
section, you will learn multiple w ays to operate and manage existing functions of the
Duckiebot.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Laptop setup

RResults:esults:Know how to use the Dashboard, Portainer and the DT shell for demos.

ContContentsents

Section6.1- Remote connection with a browser and an interface....................................1919

Section6.2- Starting a demo using the DT shell..2020

6.1.6.1.RRemotemote connection with a bre connection with a browser and an intowser and an interfaceerface
One of the easiest way to use and get an overview of your DuckiebotÕs operations ca-
pacities is to use a Duckietown designed web interface, that we call theDashboard. The
dashboard will allow y ou to monitor and operate basic functionalities of the Duckiebot.

ExExerercisecise8.8.Using the DashboarUsing the Dashboardd..
To set up the dashboard, follow this tutorial. Once on the dashboard, explore the in-
terface and try to understand its features.

Through the dashboard you can, e.g., move the Duckiebot. You can ýnd a tutorial on
how to do so onSection 9.4 - Option 2: Using the dashboard.

You can even see what the Duckiebot is seeing Through the dashboard. You can fol-
low the instructions from Section 10.3 - Viewing the image stream on the Dashboard
to do so.

The dashboard is really useful for quick debugging and for moving the Duckiebot. We
suggest you use it every time you have doubts about the camera nor working or the mo-
tors not being plugged in the right way.

But this interface has its limits, as it hides everything that is actually running on the
duckiebot. To better understand the duckiebot, letÕs take a look at what is under the
hood : we will use portainer.

To manage and use containers, the command line interface is not so easy to use. But
there exist a tool that create a nice interface to manage containers:Portainer. Portainer

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/06_basic_duckiebot_operation.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/06_basic_duckiebot_operation.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/06_basic_duckiebot_operation.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/duckiebot_dashboard_setup.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/rc_control.html#sub:setup-ros-websocket-image
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/read_camera_data.html#sub:image-dashboard
https://www.portainer.io/

Z

Z

Z

is itself a container that runs on a device. LetÕs learn how to use it.

ExExerercisecise9.9.Using PUsing Portainerortainer..
Luckily, We have one running directly on the duckiebots at startup. Go to *.7�

-$,(�JMA?J����� on your web browser. You should arrive on an interface. Navigate
on the side window to "MLR?GLCPQ. Here you will see all the containers that are run-
ning or that are stopped on your duckiebot.

Look for the one that has BSAIGC@MR=GLRCPD?ACin the name. This one contains all
the drivers you need to drive around, use the camera and the leds.

Select it, click on stop, then try to move your duckiebot around again with the dash-
board. It doesnÕt work anymore. Select it again and start it. Now, ýnd the JMEQbut-
ton, right next to the name. This will open the logs output of the container. This can
be very useful to debug new containers. In here you might see the error messages if
something goes wrong.

With this int erface, you can also attach a shell to the container, monitor its memory
and cpu usage, and inspect its conýguration.

Portainer is really helpful to manage images and containers that are already on the
duckiebot, but what about if you want to create a new container or run a new demo.
You could still do it fr om there, but it is not very intuitiv e. We commonly use theBR

QFCJJ, that you already have installed.

6.2.6.2.Starting a demo using the DStarting a demo using the DT shellT shell
In the Duckietown world, demos are containers that contain a set of functionalities
ready to work, if the rest of the Duckiebot is set up properly (e.g. dt-car-interface and
dt-duckiebot-interface are running). This is also the moment where the work done in
Section 3.4 - Calibration ýnally pays oÿ. In order for the demo to work nicely, every
Duckiebot must have undergone a calibration procedure to account for its motorsÕ and
cameraÕs characteristics. In other words, the calibration procedure ensures that every
Duckiebot will behave in the same way when it is given the same set of inputs or com-
mands. The demos all follow the same worküow, which is describedhere.

ExExerercisecise10.10.TTry out the lanery out the lane-following demo-following demo..
LetÕs now start a lane_following demo. To do so, follow theseinstructions.

After following the instructions completely, you should have run the lane following de-
mo, and seen the visual output of the lane ýlter node.

In the duckiebot operation manual, you can ýnd the instructions for the other demos.
We mainly use the indeýnite_navigation one.

�� � ��� �� ������ �� � ���� ����

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/06_basic_duckiebot_operation.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/06_basic_duckiebot_operation.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/running_demos.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/06_basic_duckiebot_operation.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/demo_lane_following.html

Z

PPARARTT BB

[RH2] Basic Dev[RH2] Basic Developmentelopment

In this part you will get to make your ýrst small program that runs on your Duckiebot!
But before that, we will cover some important tool and handy skill you need.

ContContentsents

UnitUnit BB-1-1 - Git and GitHubGit and GitHub..2222

UnitUnit BB-2-2 - Python prPython progrograms and enams and envirvironmentsonments..2424

UnitUnit BB-3-3 - Become a DockBecome a Docker Per Powowerer-User-User..3232

UnitUnit BB-4-4 - AIDO submissionsAIDO submissions..3636

UnitUnit BB-5-5 - CrCreating Dockeating Docker containerser containers..3838

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/00_title.md

Z

Z

Z

Z

Z

UUNITNIT BB-1-1

Git and GitHubGit and GitHub

Working on software in a group is great for development, but it automatically brings
many pitfalls and issues. How to handle code that has been modiýed at the same time
by two members of the group? How to keep an eye on what other members write in
the code? How to keep enough history of the code to be able to go back to a stable ver-
sion when something bad was added? How to do that when a few hundred people work
on the same code and not go crazy. The answer is simple:code vcode versioning tersioning toolsools. These
tools allow communities to swiftly handle these issues. The most used one, and the one
we will use, isgitgit.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Laptop setup

RResults:esults:Know how to extensively use a code versioning tools, git

ContContentsents

Section1.1- Learning git ..2222

Section1.2- What is github..2222

Section1.3- Being a good git citizen..2222

1.1.1.1.Learning gitLearning git
Git is a great tool, that is mandatmandatoryory to anyone doing any sort of code. Learning how to
use it is essential.

ExExerercisecise11.11.Git tutGit tutorialorial..
To learn how to use all of gitÕs functionalities, complete this tutorial.

1.2.1.2.What is githubWhat is github
ÒGitHub is a code hosting platform for version control and collaboration. It lets you and
others work together on projects from anywhere.Ó(source : github.com)

Github is where all the code is stored. It provides tools to handle pull requests, issues,
and much more. Theduckietown organization github page hosts all relevant code. It is
comprised of many diÿerent repositories.

1.3.1.3.Being a gBeing a good git citizenood git citizen
Knowing how to use git is the ýrst step. The second step, which is of the same impor-
tance, is knowing how to use it well.

��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md
https://learngitbranching.js.org/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md
https://github.com/duckietown
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md

Z

Z

1)1) CommitsCommits

¥ Commits need to begrgranularanular: One commit contains on ýx, or one function. It can-
not have two new functions, and three bug ýx. This means that it is better to do too
many commits that not enough. This is helpful when doing cherry picks, or when
checking out a previous version of the code.

¥ Commits need to havemeaningful messagmeaningful messageses: The message of the commit should de-
scribe its content.

2)2) BrBranches, forks, pull ranches, forks, pull request and peer request and peer revieweview

If you are going to work on a new function, but are not sure yet how it is going to go,
then you cannot work on the master branch. This master branch needs to only receive
code that has been tested, reviewed and approved by the team.

You then have twtwo solutionso solutions:

¥ BrBranchinganching On the main remote, you can branch out of the master branch, as ex-
plained in the above tutorial. Please give a relevant name to the branch (example :Òde-
vel-new-flying-functionÓ). On repositories that you and a small team use a lot, this is
the best option.

¥ FForkingorking You can fork the main repo into you own workspace, and work from here.
On repositories that are used by a lot of people, or that you very rarely will modify , this
is the best option.

No matter the chosen solution, you then do your work, commit it, and then push it to
github. On github, your branches will appear in your repository. When you feel like it
is ready to be integrated to the master branch, you can open apull r equest. This will
allow your co workers to see the modiýcations you made.

What yWhat you need tou need to do:o do:

¥ Check that you are not committing wrong things by error.

¥ Provide a clear description of your work

¥ explain why it is relevant

¥ test it before opening the pull request, and explain that the test worked

¥ assign relevant co-workers to review the code

What the rWhat the revieweviewers need ters need to do (all in the github into do (all in the github interface):erface):

¥ Go through the modiýed code

¥ Comment directly on lines that raise questions and doubts

¥ Propose modiýcations

¥ And then, when all conversation are resolved, approve and merge the pull request

A pull r equest must never be approved and merged by the person who submitted it.
Peer review is one of the most important part of software development. Not only it does
allow for error prooýng, but it also allows for someone to make a code suggestion alone.
This way the code can be easily discussed and improved, even when it was functional
to start with.

� �� � �� �� �� � �� ��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md
https://help.github.com/en/articles/about-pull-requests

Z

Z

UUNITNIT BB-2-2

Python prPython progrograms and enams and envirvironmentsonments

We assume you are already quite comfortable with Python. Nevertheless, when you
work with big and complex projects, there are some subtleties that you must consider
and some handy tools that can make your life easier. LetÕs take a look at some of these
now.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Laptop setup

RResults:esults:Developer knowledge of Python.

ContContentsents

Section2.1- Deýne a basic project structure..2424

Section2.2- Run a basic program on your Laptop..2828

Section2.3- Run a basic program on your Duckiebot..2929

Section2.4- Install dependencies using package managers (e.g., ?NR, NGN) 3131

2.1.2.1.DefDefine a basic prine a basic project structuroject structuree
In Duckietown, everything runs in Docker containers. All you need in order to run a
piece of software in Duckietown is a Duckietown-compliant Docker image with your
software in it.

A boilerplate is provided by the followingrepository.

The repository contains a lot of ýles, but do not worry, we will analyze them one by
one.

First of all, you will need to make a copy of the template in your own GitHub account.
To do so, go to the repository and click on the fork button.

Figure 2.1

Now that you have a copy of the template, you can create new repositories based oÿ of
it. In or der to do so, go to GitHub and click on the button :�< at the top-right corner of
the page and then click onNew Repository.

��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/02_python_01_programs_and_environments.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/02_python_01_programs_and_environments.md
https://github.com/duckietown/template-basic
https://github.com/

Figure 2.2

You will see a page that looks like the following:

Figure 2.3

In the sectionRepository template, select "���#��� �RCKNJ?RC�@?QGA. Pick a name
for your repository (say KW �NPMEP?K) and press the button Create repository. Note, you
can replaceKW�NPMEP?Kwith the name of the repository that you prefer, make sure you
use the right name in the instructions below.

This will cr eate a new repository and copy everything from the repository RCKNJ?RC�

@?QGAto your new repository. You can now open a terminal and clone your newly cre-
ated repository.

� EGR AJMLC FRRNQ���EGRFS@�AMK� "���#��� �KW�NPMEP?K
� AB KW�NPMEP?K

NNotote:e:Replace8.41=- ,$ in the link above with your GitHub username.

The repository contains already everything you need to create a Duckietown-compliant
Docker image for your program. The only thing we need to change before we can build
an image from this repository is the repository name in the ýle Dockerýle. Open it us-
ing the text editor you prefer and change the ýrst line from:

 1&�1$/.=- ,$�� ����#���#���� �

� "���� � ������� � �� � �� ��������� ��

to

 1&�1$/.=- ,$��KW�NPMEP?K�

Save the changes. We can now build the image, even though there is not going to be
much going on inside it until w e place our code in it. To do that, we need to enable de-
velopment features in the duckietown-shell by running the following in a terminal:

� BRQ GLQR?JJ BCTCJ

Now, in a terminal, move to the directory created by the EGR AJMLCinstruction above
and run the following command:

� BRQ BCTCJ @SGJB�D ��?PAF ?KB��

If you correctly installed Docker and BRQ, you should see a long log that ends with
something like the following:

�	 � "���� � ������� � �� � �� ���������

Figure 2.4

You can now run your container by executing the following command.

� BMAICP PSL �GR ��PK BSAIGCRMUL�KW�NPMEP?K�T��?KB��

This will show the following message:

� "���� � ������� � �� � �� ��������� �

Z

3FC�CLTGPMLKCLR�T?PG?@JC�5$'("+$=- ,$�GQ�LMR�QCR��4QGLE�����?����@��C��
 BBGLE��AMBC�KW�NPMEP?K�RM�/83'.-/ 3'
 BBGLE��AMBC�BR�AMKKMLQ�RM�/83'.-/ 3'
 ARGT?RGLE�QCPTGACQ�@PM?BA?QR���
#MLC�

3FGQ�GQ�?L�CKNRW�J?SLAF�QAPGNR��4NB?RC�GR�RM�J?SLAF�WMSP�?NNJGA?RGML�

#C?ARGT?RGLE�QCPTGACQ�@PM?BA?QR���
#MLC�

Congratulations! You just built and run your ýrst Duckietown-compliant Docker im-
age.

2.2.2.2.RRun a basic prun a basic progrogram on yam on your Laptour Laptopop
Now that we know how to build a Docker image for Duckietown, letÕs put some code
in one of them.

We will see how to write a simple Python program, but any language should do it.

Open a terminal and go to the directory KW�NPMEP?Kcreated above. In Duckietown,
Python code must belong to a Python package. Python packages are placed inside the
directory code in KW�NPMEP?K. Let go ahead and create a directory called KW=N?AI?EC

inside code.

� KIBGP �N ��AMBC�KW=N?AI?EC

A Python package is simply a directory containing a special ýle called==GLGR==�NW.
So, letÕs turn that KW=N?AI?EC into a Python package.

� RMSAF��AMBC�KW=N?AI?EC�==GLGR==�NW

Now that we have a Python package, we can create a Python script in it. Use your fa-
vorite text editor to create the ýle ��AMBC�KW=N?AI?EC�KW=QAPGNR�NWand place the fol-
lowing code inside it.

KCQQ?EC� �'CJJM�6MPJB��
���� 	 KCQQ?EC

We now need to tell Docker we want this script to be the one executed when we run the
command BMAICP�PSL . In order to do so, open the ýle J?SLAF�QF and replace the line

CAFM��3FGQ�GQ�?L�CKNRW�J?SLAF�QAPGNR��4NB?RC�GR�RM�J?SLAF�WMSP�?NNJGA?�
RGML��

�� � "���� � ������� � �� � �� ���������

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/02_python_01_run_basic.md

Z

with the line

BR=CVCA�NWRFML���K��KW=N?AI?EC�KW=QAPGNR�

NNotote:e:Always prepend BR=CVCAto the main command inJ?SLAF�QF .

If you are curious about why that is important, we can tell you that it helps us deal with
an interesting problem called ÒThe zombie reaping problemÓ (more about this in this
article).

Let us now re-build the image:

� BRQ BCTCJ @SGJB�D ��?PAF ?KB��

and run it:

� BMAICP PSL �GR ��PK BSAIGCRMUL�KW�NPMEP?K�T��?KB��

This will show the following message:

3FC�CLTGPMLKCLR�T?PG?@JC�5$'("+$=- ,$�GQ�LMR�QCR��4QGLE�����?����@��C��
 BBGLE��AMBC�KW�NPMEP?K�RM�/83'.-/ 3'
 BBGLE��AMBC�BR�AMKKMLQ�RM�/83'.-/ 3'
 ARGT?RGLE�QCPTGACQ�@PM?BA?QR���
#MLC�

'CJJM�6MPJB�

#C?ARGT?RGLE�QCPTGACQ�@PM?BA?QR���
#MLC�

Congratulations! You just built and run your own Duckietown-compliant Docker im-
age.

2.3.2.3.RRun a basic prun a basic progrogram on yam on your Duckiebotour Duckiebot
Now that we know how to package a piece of software into a Docker image for Ducki-
etown, we can go one step further and write code that will run on the robot instead of
our laptop.

This part assumes that you have a Duckiebot up and running with hostname ,8=1.!.3 .
Of course you donÕt need to change the hostname to ,8=1.!.3 , just replace it with your
robot name in the instructions below. You can make sure that your robot is ready by
executing the command

� NGLE ,8=1.!.3�JMA?J

If we can ping the robot, we are good to go.

� "���� � ������� � �� � �� ��������� ��

https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/02_python_02_run_duckiebot.md

Before we start, we need to conýgure the Duckiebot to accept new code. This is nec-
essary because the Duckiebot by defaults runs only code released by the Duckietown
community. In order to conýgure the robot to accept custom code, run the following
command,

� BRQ BCTCJ U?RAFRMUCPQRMN�' ,8=1.!.3�JMA?J

NNotote:e:You need to do this once and the eÿect will be lost when the Duckiebot reboots.

Let us go back to our script ýle my_script.py and change it to:

GKNMPRMQ
KCQQ?EC� �'CJJM�DPMK �Q �� � MQ� CLTGPML: �5$'("+$=- ,$� <
���� 	 KCQQ?EC

We can now modify slightly the instructions for building the image so that the image
gets built directly on the robot instead of your laptop or desktop machine. Run the com-
mand

� BRQ BCTCJ @SGJB�D ��?PAF ?PK��T� �' ,8=1.!.3�JMA?J

As you can see, we changed two things, one is ��?PAF ?PK��T� which tells Docker to
build an image that will run on ARM ar chitecture (which is the architecture the CPU
on the robot is based on), the second is�' ,8=1.!.3�JMA?J which tells Docker where
to build the image.

Once the image is built, we can run it on the robot by running the command

� BMAICP �' ,8=1.!.3�JMA?J PSL �GR ��PK ��LCR�FMQR BSAIGCRMUL�KW�NPM�
EP?K�T�

If everything worked as expected, you should see the following output,

3FC�CLTGPMLKCLR�T?PG?@JC�5$'("+$=- ,$�GQ�LMR�QCR��4QGLE��,8=1.!.3��
 BBGLE��AMBC�KW�NPMEP?K�RM�/83'.-/ 3'
 BBGLE��AMBC�BR�AMKKMLQ�RM�/83'.-/ 3'
 ARGT?RGLE�QCPTGACQ�@PM?BA?QR���
#MLC�

'CJJM�DPMK�,8=1.!.3�

#C?ARGT?RGLE�QCPTGACQ�@PM?BA?QR���
#MLC�

Congratulations! You just built and run your ýrst Duckietown-compliant and Duck-
iebot-compatible Docker image.

�� � "���� � ������� � �� � �� ���������

Z

Z

2.4.2.4.Install dependencies using packagInstall dependencies using package manage managers (e.gers (e.g.,., �� ,, �))
It is quit e common that our programs need to import libr aries, thus we need a way to
install them. Since our programs reside in Docker images, we need a way to install li-
braries in the same image.

The template provided by Duckietown supports two package managers out of the box:

¥ Advanced Package Tool (?NR)

¥ Pip Installs Packages for Python3 (NGN�)

List your apt packages or pip3 packages in the ýles BCNCLBCLAGCQ�?NR�RVRand BCNCL�

BCLAGCQ�NW��RVRrespectively before running the commandBRQ�BCTCJ�@SGJB.

ExExerercisecise12.12.Basic NumPy prBasic NumPy progrogramam..
Writ e a program that performs the sum of two numbers usingNumPy. Add LSKNW

to the ýle BCNCLBCLAGCQ�NW��RVRto have it installed in the Docker image.

Here you go! Now you can handle pip dependencies as well!

� "���� � ������� � �� � �� ��������� ��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/02_python_03.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/02_python_03.md
https://numpy.org/

Z

Z

Z

UUNITNIT BB-3-3

Become a DockBecome a Docker Per Powowerer-User-User

We already introduced inUnit A -5 - Docker basicswhat Docker containers are and how
you can start them and do basic operations. Recall that a Docker container is a closed
environment and any change you do there cannot aÿect your host system or other con-
tainers. This can be great if you want to protect your laptop from possible mischief com-
ing from inside a container, but at the same time limits what you can do with it. Thank-
fully, Docker has some very powerful ways to interact with your system and the outside
world.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Laptop setup

RRequirequires:es:Docker basics

RResults:esults:Advanced knowledge of using Docker images and containers

ContContentsents

Section3.1- Getting data in and out of your container..3232

Section3.2- Docker and networking..3333

Section3.3- Handling devices..3333

Section3.4- Other fancy option..3333

3.1.3.1.GetGetting data in and out of yting data in and out of your containerour container
Docker provides a few ways to extract and import ýles from and to a container. We will
look only at volume mounting as it is the most used and versatile way. In the simplest
terms, mounting a volume to a container essentially means that you make a directory
on your host machine available in the container. Then, you can think of these two di-
rectories as perfect copies of each-other: if you change something in one of them, it will
be changed in the other as well. Therefore, if your container needs some data or conýg-
uration ýles to operate properly, or if you need to export your results out of it, volume
mounting is the way to go. So, how does it work?

You can use BMAICP PSL with the �T FMQR=BGP�AMLR?GLCP=BGPoption. Here �T is a
shortcut for ��TMJSKC . This speciýes thatAMLR?GLCP=BGPin the container will be re-
placed with FMQR=BGPfrom your computer. Give it a try:

ExExerercisecise13.13.DockDocker ver volume mountingolume mounting..
Run a new Ubuntu container where you mount your home directory in the contain-
erÕs home directory:

��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md
https://docs.docker.com/storage/volumes/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md

Z

Z

Z

� BMAICP PSL �GR �T Y��FMKC S@SLRS

In bash Y is a shortcut for your home directory (�FMKC�WMSP=SQCPL?KC). Now if you
check which ýles are in the containerÕs home directory by running JQ �FMKC youÕd
see the ýles you have on your host machine. Try to change one of them (hopefully
one not that important ýle) or to create a new one. Check in your host home folder if
the changes appear there as well. Now do the opposite: make a change in your host
and observe if thereÕs a corresponding change in the container.

3.2.3.2.DockDocker and netwer and networkingorking
The defaultnetwork environment of a Docker container (a bridge network driver) gives
your container access to the Internet but not much more. If you run, for example, a
web server in the container, you wouldnÕt be able to access it from your host. This is not
ideal for us as most of the Duckietown code-base actually uses similar technologies to
connect the various parts of the code.

However, by adding ��LCRUMPI FMQR to the BMAICP PSL command, we can remove the
network isolation between the container and the Docker host and therefore, you can
use the full range of networking capabilities that your host has within the convenient
environment in the container.

3.3.3.3.Handling devicesHandling devices
The Docker containers do not have access to the devices on your computer by default.
Yup, if you put your code in a container it cannot use the camera, wheels and LEDs of
your Duckiebot. No fun, right? Thankfully, just like with the network, Docker has a so-
lution for that! You can manually allow each device to be available to your container or
you can allow all of them by simply passing the��NPGTGJCECB option to BMAICP PSL.
You will see that option being often used in Duckietown.

3.4.3.4.Other fancy optionOther fancy option
Docker provides many more options for conýguring your containers. HereÕs a list of the
most common ones:

� ����� � �� ����� �� �!�� �� ��� ��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md
https://docs.docker.com/network/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md

Z

Tûúñ÷ 3.1.#."*$1 � 14- ïîëóïðì

Short commandShort command Full commandFull command ExplanationExplanation

�G ��GLRCP?ARGTC Keep STDIN open even if not attached, typi-
cally used together with �R .

�R ��RRW Allocate a pseudo-TTY, gives you terminal
access to the container, typically used togeth-

er with �G .
�B ��BCR?AF Run container in background and print con-

tainer ID.
��L?KC Sets a name for the container. If you donÕt

specify one, a random name will be generat-
ed.

�T ��TMJSKC Bind mount a volume, exposes a folder on
your host as a folder in your container. Be

very careful when using this.
�N ��NS@JGQF Publish a containerÕs port(s) to the host, nec-

essary when you need a port to communicate
with a program in your container.

�B ��BCTGAC Similar to �T but for devices. This grants the
container access to a device you specify. Be

very careful when using this.
��NPGTGJCECB Give extended privileges to this container.

That includes access to allall devices. Beeex-x-
trtremelyemelycareful when using this.

��PK Automatically remove the container when it
exits.

�' ��FMQRL?KC Speciýes remote host name, for example
when you want to execute the command on

your Duckiebot, not on your computer.
��FCJN Prints information about these and other op-

tions.

ExamplesExamples

Set the container name to HMWQRGAI:

��L?KC�HMWQRGAI

Mount the hostÕs path �FMKC�KWSQCP�B?R? to �B?R? inside the container:

�T��FMKC�KWSQCP�B?R?��B?R?

Publish port 8080 in the container as 8082 on the host:

�N����������

�� � ����� � �� ����� �� �!�� �� ���

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md

Allow the container to use the device�BCT�KKA@JI� :

�B��BCT�KKA@JI�

Run a container on the Duckiebot:

�'�BSAIGC@MR�JMA?J

� ����� � �� ����� �� �!�� �� ��� ��

Z

Z

Z

Z

Z

UUNITNIT BB-4-4

AIDO submissionsAIDO submissions

The duckietown platform is one of many possibilities. In particular it is used for a in-
ternational competition namedAIDO. You will pr obably have part in it in one way or
the other. You need to be able to participate in it.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Laptop setup

RResults:esults:Know how to participate in AIDO.

ContContentsents

Section4.1- Getting started..3636

Section4.2- Make a simple submission..3636

Section4.3- Customize a solution..3737

4.1.4.1.GetGetting startting starteded
The AIDO book is complete and already has all the necessary instructions.

ExExerercisecise14.14.Setup ySetup your account and softwour account and softwararee..
Follow the instructions here and here.

4.2.4.2.MakMake a simple submissione a simple submission
To ýrst get started and understand the worküow of AIDO submission, you will submit
one with its default version.

ExExerercisecise15.15.MakMake a simple submissione a simple submission..
Follow the instructions here. You will have to :

¥ retrieve a submission repository

¥ submit the default solution

¥ monitor your submission

¥ explore the leaderboard

On the AIDO website, ýnd your submissions jobs, and play around with the follow-
ing parameters:

¥ priority : changes the order of evaluation priority amongst your various submis-
sions

¥ resetting : reset a job to make it restart

�	

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/04_aido_submission.md
https://docs.duckietown.org/daffy/AIDO/out/index.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/04_aido_submission.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/04_aido_submission.md
https://docs.duckietown.org/daffy/AIDO/out/cm_accounts.html
https://docs.duckietown.org/daffy/AIDO/out/cm_sw.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/04_aido_submission.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/04_aido_submission.md
https://docs.duckietown.org/daffy/AIDO/out/cm_first.html

Z

¥ retiring : removing a job from the evaluation queue

4.3.4.3.CustCustomize a solutionomize a solution
Of course, the idea is not to submit the default solutions, but to improve them. This part
is not mandatory, but you can go around and try to do better, by following the quick-
start instructions.

���� ������ ����� �

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/04_aido_submission.md
https://docs.duckietown.org/daffy/AIDO/out/quickstart_lanefollowing.html
https://docs.duckietown.org/daffy/AIDO/out/quickstart_lanefollowing.html

Z

Z

UUNITNIT BB-5-5

CrCreating Dockeating Docker containerser containers

We spent a lot of time looking at how to use Docker containers and the image that they
start from. But that still leaves a very important question open: how can you make your
own image? Now you will have the opportunity to make your ýrst image that will do
some basic computer vision processing on your Duckiebot!

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Laptop setup

RRequirequires:es:Duckiebot initialization

RRequirequires:es:Docker basics

RRequirequires:es:Docker poweruser skills

RResults:esults:Advanced knowledge of using Docker images and containers.

ContContentsents

Section5.1- Where do Docker containers come from?..3838

Section5.2- Environment variables and Docker containers..4040

Section5.3- Guide to the Dockerýle keywords..4040

Section5.4- Creating your ýrst functional Docker image ..4141

Section5.5- Pushing to DockerHub..4343

5.1.5.1.WherWhere do Docke do Docker containers come frer containers come from?om?
So far we saw that you can get a Docker image from the DockerHub by knowing its
name. How do these images get on DockerHub? Well, the simple answer is that you
register an account and then similarly to git, you can push one of your images to Dock-
erHub. And how do you create an image in the ýrst place?

A simple, though rarely practiced way is to convert a container in which you have made
some changes into a new image. This can be done through the docker commit com-
mand. However, as this is not the preferred mode of operation we wonÕt discuss it fur-
ther. But you can ýnd more details in theoþcial documentation .

The more popular and accepted way is to build an image from a ÒrecipeÓ, called a Dock-
erýle. A Dockerýle is a text ýle that speciýes the commands required to create a Docker
image, typically by modifying an existing container image using a scripting interface.
They also have special keywords (which are always CAPITALIZED), lik e %1., , 14- ,
$-318/.(-3 , and so on. For example, create a ýle called Dockerýle with the following
content:

��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/setup_duckiebot.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md
https://hub.docker.com/
https://hub.docker.com/signup
https://docs.docker.com/engine/reference/commandline/commit/

%1.,�S@SLRS
14-�RMSAF�LCU=[JC�
",#�JQ��J

The ýrst line above deýnes the base image on top of which we will build our container.
The second line simply executes the Linux command RMSAF LCU=[JC� which creates a
new ýle with this name. And the last line is the default command that will be run when
the container is started (unless the user provides a diÿerent command).

Now, to build the image we can simply run:

� BMAICP @SGJB�R KW=[PQR=AMLR?GLCP�T� �

The last part of this command denotes the directory (called context) which contains
your Dockerýle. The � shorthand refers to the current directory.

You should see something like:

2CLBGLE�@SGJB�AMLRCVR�RM�#MAICP�B?CKML�������I!
2RCN�������%1.,�S@SLRS

����C?�D��E�BC�C
2RCN�������14-�RMSAF�LCU=[JC�

����C�@��ER�XWA�
2RCN�������",#�JQ��J

����1SLLGLE�GL���D���WSB��
1CKMTGLE�GLRCPKCBG?RC�AMLR?GLCP���D���WSB��

������?�@B���DA�
2SAACQQDSJJW�@SGJR���?�@B���DA�
2SAACQQDSJJW�R?EECB�KW=[PQR=AMLR?GLCP�T�

Now run the command BMAICP GK?ECQin your terminal, and you should see an image
called KW=[PQR=AMLR?GLCPwith tag T� :

� BMAICP GK?ECQ
1$/.2(3.18 3 & (, &$ (# "1$ 3$# 2(9$
KW=[PQR=AMLR?GLCP T� ��?�@B���DA� � QCAMLBQ?EM ����,!

An int eresting observation is that the container size is����,! . Now, instead of needing
to carry around a ����,! ýle, we can just store the �*! text ýle and rest assured that
all our important setup commands are contained within. In a sense, a whole OS, with
our custom ýle inside is compressed to 3 lines of code.

Now, similarly to before, we can simply run:

� �� ���� �� ����� � ���� ����� ��

Z

Z

� BMAICP PSL �GR KW=[PQR=AMLR?GLCP�T�
RMR?J ��
BPUVP�VP�V � PMMRPMMR���� ,?P � ���� @GL
BPUVP�VP�V � PMMRPMMR���� NP �� ���� @MMR
BPUVP�VP�V � PMMRPMMR ��� 2CN �� ����� BCT
BPUVP�VP�V � PMMRPMMR���� 2CN �� ����� CRA
BPUVP�VP�V � PMMRPMMR���� NP �� ���� FMKC
BPUVP�VP�V � PMMRPMMR���� ,?W �� ���� JG@
BPUVP�VP�V � PMMRPMMR���� ,?P � ���� JG@��
BPUVP�VP�V � PMMRPMMR���� ,?P � ���� KCBG?
BPUVP�VP�V � PMMRPMMR���� ,?P � ���� KLR
�PU�P��P�� � PMMRPMMR � 2CN �� ����� LCU=[JC�
BPUVP�VP�V � PMMRPMMR���� ,?P � ���� MNR
BP�VP�VP�V ��� PMMRPMMR � 2CN �� ����� NPMA
BPUV������ � PMMRPMMR���� ,?P � ���� PMMR
BPUVP�VP�V � PMMRPMMR���� ,?P �� ���� PSL
BPUVP�VP�V � PMMRPMMR���� ,?P �� ���� Q@GL
BPUVP�VP�V � PMMRPMMR���� ,?P � ���� QPT
BP�VP�VP�V �� PMMRPMMR � 2CN �� ����� QWQ
BPUVPUVPUR � PMMRPMMR���� ,?P � ���� RKN
BPUVP�VP�V � PMMRPMMR���� ,?P � ���� SQP
BPUVP�VP�V � PMMRPMMR���� ,?P � ���� T?P

Notice that as soon as we run the container Docker will execute the JQ �J command
as speciýed by the Dockerýle, revealing that LCU=[JC� was indeed stored in the image.
However, we can still override JQ �J by passing a command line argument:BMAICP

PSL��GR�WMSP�BSAI�T��:ASQRMK=AMKK?LB< .

5.2.5.2.EnEnvirvironment vonment variables and Dockariables and Docker containerser containers
Environment variables are often used to control the behavior of one or more programs.
As the name hints, these variables are associated with a particular (terminal) environ-
ment and are shared among processes. In fact, all processes started from an environ-
ment inherit its set of environment variables. If you are curious, you can check out the
Wikipedia article about them.

In bash you can set an environment variable with CVNMPR 5 1=- ,$�T?P=T?JSC , and
to check a variableÕs current value use `echo ERROR docker run -e CAMERA_EXPO-
SURE=ÕsportÕ my_fancy_camera:alpha

Then the Python code in the container can obtain the value you passed via theMQ�CL�

TGPMLdictionary. In this way you make a single Docker image that can initialize con-
tainers with all sorts of conýgurations. Quite powerful, right?

5.3.5.3.Guide tGuide to the Docko the Dockerferfile kile keyweyworordsds
Here are some of the most commonly used Dockerýle keywords. You will see them in
many of the Duckietown Dockerýles and you will oft en make use of them. You can ýnd
much more information and details on how to use them onDockerÕs oþcial documen-

�� � �� ���� �� ����� � ���� �����

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md
https://en.wikipedia.org/wiki/Environment_variable
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md
https://docs.docker.com/engine/reference/builder/#usage

Z

Z

tation.

Tûúñ÷ 5.1.Dïùò÷íöóñ÷ ò÷èé ïíøì

KKeyweyworordd

FROM Designates the base image on top of which this container imag
RUN
CMD Executes any shell command at run time, unless the user speciýes another command. This is the default command the container will e
ENV Sets an environment v

COPY Copies ýle from the cont
WORKDIR Chang

5.4.5.4.CrCreating yeating your four first functional Dockirst functional Docker imager imagee
Now that you know your way around Dockerýles, it is time to ýnally build something
meaningful that works on your Duckiebot! We are going to build a very basic vision
system: we will try t o measure how much of the image stream the camera sees is cov-
ered with pixels of a particular color.

ExExerercisecise16.16.CrCreating a color deteating a color detectector in Dockor in Dockerer..
NNotote:e: The following exercise will use the camera on your robot. The NGA?KCP?li-
brary allows only one process to access the camera at a time. Therefore, if there is
another process on your bot that is already using the camera, your code will lik ely
fail. Make sure that the BR�BSAIGC@MR�GLRCPD?ACand any other container that can
use the camera are stopped. You can usePortainer to do that.

We will divide the image that the camera acquires into -=2/+(32 equal horizontal
sectors. -=2/+(32 will be an environment variable we pass to the container. Think of
it as a conýguration parameter. The container should ýnd which color is most pre-
sent in each sector. Or alternatively you can look at the color distribution for each
split. It should print the r esult in a nicely formatted way with a frequency of about
1Hz.

You can start your Dockerýle from BSAIGCRMUL�BR�BSAIGC@MR�GLRCPD?AC�B?DDW�

?PK��T� . Most of the stuÿ you need should already be in there. Make a PCOSGPC�

KCLRQ�RVR ýle where you list all your pip dependencies. We would expect that you
would need at leastNGA?KCP?and LSKNW. Using a PCOSGPCKCLRQ�RVRýle is a good
practice, especially when you work with big pr ojects. The Dockerýle then copies this
ýle and passes it to pip which installs all the packages you specify there. Finally copy
your code in the container and specify it should be the starting command. HereÕs an
example Dockerýle. Make sure you understand what each single line is doing. Keep
in mind that you might need to modify it in order to work for you:

� �� ���� �� ����� � ���� ����� ��

https://docs.docker.com/engine/reference/builder/#usage
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md

%1.,�BSAIGCRMUL�BR�BSAIGC@MR�GLRCPD?AC�B?DDW�?PK��T�

6.1*#(1��AMJMP=BCRCARMP

"./8�PCOSGPCKCLRQ�RVR���

14-�NGN�GLQR?JJ��P�PCOSGPCKCLRQ�RVR

"./8�AMJMP=BCRCARMP�NW��

",#�NWRFML���AMJMP=BCRCARMP�NW

Working with NGA?KCP?can sometimes be tricky so you can use this template for
AMJMP=BCRCARMP�NWto get started:

GKNMPRNGA?KCP?
GKNMPRNGA?KCP?�?PP?W
DPMKRGKCGKNMPRQJCCN

���� NGA?KCP?� /G"?KCP? 	
 �� A?KCP?�
A?KCP?� PCQMJSRGML� 	 ��� ���

���	� 3PSC�
���� NGA?KCP?� ?PP?W� /G1&! PP?W 	 A?KCP?
 �� MSRNSR�

A?KCP?� A?NRSPC	 MSRNSR �PE@�

MSRNSR� MSRNSR� ?PP?W

��8MS�A?L�LMU�RPC?R�MSRNSR�?Q�?�LMPK?J�LSKNW�?PP?W
��#M�WMSP�K?EGA�FCPC

QJCCN	 �

Once you have your AMJMP=BCRCARMP�NWýle ready to be tested, you can build it di-
rectly on your bot by running:

� BMAICP �' ������� ��#��� �JMA?J�@SGJB �R AMJMPBCRCARMP��

Do you remember what �' does? It takes the context (the folder in which you are)
and ships it to the device speciýed by�' and build the container there. Once the
container is built (typically it takes more time the ýrst time), you can test it with:

� BMAICP �' ������� ��#��� �JMA?J�PSL �GR ��NPGTGJCECB AMJMPBCRCA�
RMP

Again there is the �' option (why?) and we also have the ��NPGTGJCECB option. Do
you remember what it does? Try to remove it and see what happens.

�� � �� ���� �� ����� � ���� �����

Z

We omitted to mention what to do about a lot of implementation details which can
signiýcantly aÿect the performance of your color detector. For example, what should
the value of -=2/+(32 be? Should we consider the whole width of the image or just
a central part? How many colors should we detect, which ones and what is the best
way to do it? Should you use RGB or HSV color space? All this is left for you to de-
cide. This is typically the case in robotics: you know what the ýnal result should be,
but there are multiple ways to get there and it is up to you to decide which is the best
solution for the particular case. Experiment and ýnd what makes your color detector
really good. We recommend investing some time in this, as this color detector will
be a building block in the next module.

5.5.5.5.Pushing tPushing to Docko DockerHuberHub
Say that you want to share your awesome color detector with your friend. How can
you do that? You can of course repeat the same procedure as above, just replacing your
DuckiebotÕs name with theirs. But that is cumbersome and requires them to have the
code. DockerHub makes all this much easier. It allows you to push your image to their
repository and then anyone can directly use it. That is where all the base images you
saw so far come from.

To do this, ýrst make sure you have a DockerHub account. LetÕs say your account name
is BSAIOS?AICPK?LL . Then sharing your container with the world is as easy as building
it under your account name:

� BMAICP �' ������� ��#��� �JMA?J�@SGJB �R BSAIOS?AICPK?LL�AMJ�
MPBCRCARMP��

Then push it to DockerHub:

� BMAICP �' ������� ��#��� �JMA?J�NSQF�BSAIOS?AICPK?LL�AMJMPBCRCA�
RMP

NNotote:e: You will pr obably have to ýrst connect your DuckiebotÕs Docker client with
your DockerHub account. So ýrst open anSSH connectionto the robot and then run
BMAICP JMEGLin it. You will be prompted to provide your DockerHub username and
password. If you want to be able to push images directly from your laptop, you should
do the same there.

After youÕve pushed your image to DockerHub your code can be executed on any single
Duckiebot around the world with a single command:

� BMAICP �' ������� ��#��� �JMA?J�PSL �GR ��NPGTGJCECB BSAIOS?AICP�
K?LL�AMJMPBCRCARMP

� �� ���� �� ����� � ���� ����� ��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md

Z

PPARARTT CC

[RH3] A[RH3] Advdvanced Softwanced Softwarare Deve Developmentelopment

In this section, you will learn how t o use the Robot Operating System (ROS) to enable
diÿerent processes running on your Duckiebot to communicate with each other. You
will also learn how to monitor/visualize these communications, change the behaviour
of your robot on-the-üy, and work with ROS logs.

ContContentsents

UnitUnit C-1C-1- IntrIntr oduction toduction to Ro ROSOS..4545

UnitUnit C-2C-2- DevDevelopment in the Duckietelopment in the Duckietown infrown infrastructurastructuree..5050

UnitUnit C-3C-3- WWorking with logsorking with logs..6767

UnitUnit C-4C-4- RRobot behaobot behaviour with Rviour with ROSOS..7272

��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/00_index.md

Z

Z

UUNITNIT C-1C-1

IntrIntr oduction toduction to Ro ROSOS

The oþcial wiki describes ROS as:

����?L�MNCL�QMSPAC�KCR?�MNCP?RGLE�QWQRCK�DMP�WMSP�PM@MR��(R�NPMTGBCQ
RFC�QCPTGACQ�WMS�UMSJB�CVNCAR�DPMK�?L�MNCP?RGLE�QWQRCK�GLAJSBGLE�F?PB�
U?PC�?@QRP?ARGML�JMU�JCTCJ�BCTGAC�AMLRPMJ�GKNJCKCLR?RGML�MD�AMKKMLJW�
SQCB�DSLARGML?JGRW�KCQQ?EC�N?QQGLE�@CRUCCL�NPMACQQCQ�?LB�N?AI?EC�K?L�
?ECKCLR��(R�?JQM�NPMTGBCQ�RMMJQ�?LB�JG@P?PGCQ�DMP�M@R?GLGLE�@SGJBGLE
UPGRGLE�?LB�PSLLGLE�AMBC�?APMQQ�KSJRGNJC�AMKNSRCPQ�

You probably have some idea about what the above words mean. However, if this is
your ýrst encounter with ROS, you are already overestimating how complicated it is.
Worry do not.

Putting it in v ery simple terms, as a roboticist, ROS is what will prevent you from rein-
venting the wheel at every step of building a robot. It is a framework which helps you
manage the code you writ e, while providing you with a plethora of tools which will
speed up the process.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Laptop setup

RRequirequires:es:Duckiebot initialization

RRequirequires:es:Docker poweruser skills

RResults:esults:Basic understanding of ROS

ContContentsents

Section1.1- Why ROS?..4545

Section1.2- Basics of ROS..4646

Section1.3- Installation (Optional) ..4848

Section1.4- ROS Tutorials ..4949

1.1.1.1.WhWhy Ry ROS?OS?
Your Duckiebot is a very simple robot which has only one sensor (the camera), and two
actuators (the motors). You can probably write all the code for the basic funtionality
of a Duckiebot yourself. You start by getting images from the camera, processing them
to detect lanes, generating suitable motor commands, and ýnally executing them. You
create a single program for all of this which looks like this:

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/01_ros_devel/00_intro_ros.md
http://wiki.ros.org/ROS/Introduction
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/setup_duckiebot.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/01_ros_devel/00_intro_ros.md

Z

GKE � ECR=GK?EC=DPMK=A?KCP?	

NMQC� ECR=NMQC=DPMK=GK?EC	 GKE

AKB � ECR=AMKK?LB=DPMK=NMQC	 NMQC

PSL=KMRMPQ	 AKB

The next day, your Duckiebot crashes into a duckie which was crossing the road, so you
want to add duckie detection into your program to prevent such accidents. You modify
your program and it now looks like this:

GKE � ECR=GK?EC=DPMK=A?KCP?	

NMQC� ECR=NMQC=DPMK=GK?EC	 GKE

AKB � ECR=AMKK?LB=DPMK=NMQC	 NMQC

�� BSAIGC=BCRCARCB	 GKE
�
AKB � $,$1&$-"8=23./

PSL=KMRMPQ	 AKB

You realize, however, that your Duckiebot is not at level 5 autonomy yet and you want
to add manual control for diþcult t o navigate regions in the city. Your code now looks
lik e this:

GKE � ECR=GK?EC=DPMK=A?KCP?	

NMQC� ECR=NMQC=DPMK=GK?EC	 GKE

AKB � ECR=AMKK?LB=DPMK=NMQC	 NMQC

�� KMBC�� 43.-.,.42 �
�� BSAIGC=BCRCARCB	 GKE
�

AKB � $,$1&$-"8=23./
�	�� �

AKB � ECR=AMKK?LB=DPMK=HMWQRGAI	

PSL=KMRMPQ	 AKB

It is easy to see that when you start thinking about having even mode advanced modes
of operation such as intersection navigation, Duckiebot detection, traþc sign detec-
tion, and auto-charging, your program will end up being a massive stack of if-else
statements. What if you could split your program into diÿerent independent build-
ing blocks, one which only gets images from cameras, one which only detects duckie
pedestrians, one which controlls the motors and so on. Would that help you with or-
ganizing your code in a better way? How would those blocks communicate with each
other? Moreover, how do you switch from autonomous mode to manual mode while
your Duckiebot is still running? And what will happen once you try to do this for ad-
vanced robots with a lot of sensors and a large number of possible behaviors?

1.2.1.2.Basics of RBasics of ROSOS

�	 � ����������� � �� ����

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/01_ros_devel/00_intro_ros.md

Look at the following system

Figure 1.1

It performs exactly the same task as before. Unlike before, each of the building blocks
is independent from the rest of the blocks, which means that you can swap out certain
parts of the code with those written by others. You can write the lane pose extraction
algorithm, while y our friend works on converting that pose to a motor command. Dur-
ing runtime, the lane pose extractor and duckie detection algorithm run in par allel, just
helping you utilize your resources better. The only missing piece to get a working sys-
tem is making these blocks communicate with each other. This is where ROS comes in.
If you donÕt want to write your own driver for the camera, you could very easily use one
from any ROS robot using the PiCamera.

In ROS terminology, each box is anode, and each solid arrow connection is atopic. It is
intuitiv e that each topic carries a diÿerent type of amessage. The GKE topic has images
which are matrices of numbers, whereas the NMQCtopic may have rotation and trans-
lation components. ROS provides a lot of standard message types ranging from (LR ,
!MMJ , 2RPGLE to images, poses, IMU measurements. You can also deýne your own cus-
tom messages.

The nodes which send out data on a topic are calledpublishers of that topic and the
ones which receive the data and use it are calledsubscribersof that topic. As you can
seem from the diagram above, a node can be a publisher for one topic and subscriber
for another at the same time.

You may have noticed a dashed arrow from the HMWQRGAInode to the KMBC=F?LBJCP.
This represents that you can switch from manual to autonomous mode and vice versa
using a button on your (virtual) joystick. Unlik e sending images, which is a continuous
üow of information, you will not k eep switching modes all the time. ROS has a frame-
work designed speciýcally for such case. This is called aservice. Just like with mes-
sages, you can also deýne your own services. Here, the KMBC=F?LBJCPnode oÿers a ser-
vice and theHMWQRGAInode is the client of that service.

What manages the connections between nodes is thePMQK?QRCP. The PMQK?QRCPis re-
sponsible for helping individual nodes ýnd one another and setting up connections be-
tween them. This can also be done over a network. Remember that you are able to see
what your Duckiebot sees? That was because your laptop connected to the PMQK?QRCP

of your Duckiebot. So, without knowing, you are already doing distributed robotics! It
is important to keep in mind though that a single node can be managed by only one
PMQK?QRCPat a time.

� ����������� � �� ���� �

https://docs.duckietown.org/daffy/opmanual_duckiebot/out/read_camera_data.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/read_camera_data.html

Z

Another key building block of ROS are theparametersfor each node. Recall when you
calibrated your DuckiebotÕs wheelsor camera. These calibration parameters need to be
stored somewhere so that they are not lost when your Duckiebot powers oÿ. The ROS
parameters are also very useful for conýguring the nodes and therefore, the behavior of
your robot. Say, that you want your lane controller to react faster, then you simply need
to change the proportional gain parameter. You can hard-code that, but then changing
it would require you to modify the source code. ROS oÿers a much nicer framework for
handling hundreds of parameters for large robotics projects. You will also need para-
meters in conjunction with services. (Why?)

In ROS, code is organized in the form of packages. Each package is essentially a col-
lection of nodes which perform very speciýc, related tasks. ROS packages also contain
messages, services, and default parameter conýguration ýles used by the nodes. A stan-
dard ROS package looks like this:

Figure 1.2

When developing a large software stack, you may also ýnd it easier to have all mes-
sages, services, and parameter ýles used by all nodes running on your robot in a single
package rather than spread out inside packages which use them to avoid unneccessary
redeýnitions. The nodes, however, remain in their own packages. (Why? Does it have
something to do with the fact that multiple nodes might use the same message, etc.?)

Note that the above diagram is just one of the ways to organize the üow of data. What
happens actually on your Duckiebot is a little diÿerent.

1.3.1.3.Installation (Optional)Installation (Optional)
If you wish to install ROS on your computer, you can do so using thislink . Please note
that this might not be possible depending on your OS. Regardless of what OS you use,
you should be able to use ROS through Docker (Why?). All ROS development in Duck-

�� � ����������� � �� ����

https://docs.duckietown.org/daffy/opmanual_duckiebot/out/wheel_calibration.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/camera_calib.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/01_ros_devel/00_intro_ros.md
http://wiki.ros.org/ROS/Installation

Z

Z

ietown happens through Docker. This is why this step is not mandatory. Keep in mind
that currently all Duckietown ROS software works in ROS Kinetic Kameand if you
want to use a native installation with your Duckiebot, you should install this version,
otherwise you will lik ely run int o compatibility issues. However, we strongly recom-
mend using Docker for all ROS related software development.

1.4.1.4.RROS TOS Tututorialsorials
Tutorials on using ROS with Duckietown are covered in the next section. These tuto-
rials are tailored to the Duckietown development process. Apart from this, we strongly
recommend going through the oþcial ROS tutorials. You should even try out the Be-
ginner Level tutorials yourself if you have a native ROS installation. If not, read through
them at least and proceed to thenext section

1)1) AAdditional Rdditional Readingeading

¥ ROS Graph Concepts

� ����������� � �� ���� ��

https://wiki.ros.org/kinetic
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/01_ros_devel/00_intro_ros.md
https://wiki.ros.org/ROS/Tutorials
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/01_ros_devel/00_intro_ros.md
http://wiki.ros.org/ROS/Concepts

Z

Z

UUNITNIT C-2C-2

DevDevelopment in the Duckietelopment in the Duckietown infrown infrastructurastructuree

In this section, you will learn everything about creating a Duckietown-compliant Dock-
er image with ROS.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Laptop setup

RRequirequires:es:Duckiebot initialization

RRequirequires:es:Docker poweruser skills

RRequirequires:es:Basic understanding of ROS

RResults:esults:Developer knowledge of ROS

ContContentsents

Section2.1- Basic Project Structure ..5050

Section2.2- ROS Publisher on Laptop..5454

Section2.3- ROS Publisher on Duckiebot..5757

Section2.4- ROS Subscriber on Duckiebot..5858

Section2.5- Launch ýles..6060

Section2.6- Namespaces and Remapping..6161

Section2.7- Multi-agent Communication..6565

2.1.2.1.Basic PrBasic Project Structuroject Structuree
In Duckietown, everything runs in Docker containers. All you need in order to run a
piece of software that uses ROS in Duckietown is a Duckietown-compliant Docker im-
age with your software in it.

A boilerplate is provided here. The repository contains a lot of ýles, but do not worry,
we will analyze them one by one.

First of all, you will need to make a copy of the template in your own GitHub account.
To do so, visit this URL and click on the fork button.

Figure 2.1

Now that you have a copy of the template, you can create new repositories based oÿ of
it. In or der to do so, go to GitHub and click on the button [+] at the t op-right corner of
the page and then click on New Repository.

��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/setup_duckiebot.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md
https://github.com/duckietown/template-ros
https://github.com/duckietown/template-ros
https://github.com/

Figure 2.2

You will see a page that looks like the following:

Figure 2.3

In the sectionRRepositepository tory templatemplatee, selectYYOUR_NOUR_NAME/tAME/t emplatemplatee-r-rosos. Pick a name for
your repository (say KW�PMQ�NPMEP?K) and press the button CrCreateate re repositepositoryory. Note, you
can replaceKW�PMQ�NPMEP?Kwith the name of the repository that you prefer. Note that
no capital letters are allowed and make sure you use the right name in the instructions
below.

This will cr eate a new repository and copy everything from the repository RCKNJ?RC�

PMQto your new repository. You can now open a terminal and clone your newly created
repository.

� EGR AJMLC FRRNQ���EGRFS@�AMK� "���#��� �KW�PMQ�NPMEP?K
� AB KW�PMQ�NPMEP?K

� � �������� � �� � ��� �� �������!� � ������������� ��

NONOTETE: Replace8.41=- ,$ in the link above with your GitHub username.

The repository contains already everything you need to create a Duckietown-compliant
Docker image for your ROS program. The only thing we need to change before we can
build an image from this repository is the repository name in the ýle #MAICP[JC . Open
it using the text editor you prefer and change the ýrst line from:

 1&�1$/.=- ,$�� � 1$/.=- ,$='1 � �

to

 1& 1$/.=- ,$ � �KW�PMQ�NPMEP?K�

Save the changes.

We can now build the image, even though there wonÕt be much going on inside it until
we place our code in it.

Open a terminal and move to the directory created by the git clone instruction above.
Run the following command:

� BRQ BCTCJ @SGJB�D ��?PAF ?KB��

NNotote:e:If the above command is not recognized, you will ýrst ha ve to install it with BRQ

GLQR?JJ�BCTCJ .

If you correctly installed Docker and the duckietown-shell, you should see a long log
that ends with something like the following:

�� � � �������� � �� � ��� �� �������!� � �������������

Figure 2.4

You can now run your container by executing the following command.

� BMAICP PSL �GR ��PK BSAIGCRMUL�KW�PMQ�NPMEP?K�T��?KB��

This will show the following message:

3FC�CLTGPMLKCLR�T?PG?@JC�5$'("+$=- ,$�GQ�LMR�QCR��4QGLE�������D�@�C�A��
3FGQ�GQ�?L�CKNRW�J?SLAF�QAPGNR��4NB?RC�GR�RM�J?SLAF�WMSP�?NNJGA?RGML�

CCONGRAONGRATULATULATIONS!TIONS!You just built and run your ýrst ROS-based Duckietown-com-
pliant Docker image.

� � �������� � �� � ��� �� �������!� � ������������� ��

Z2.2.2.2.RROS Publisher on LaptOS Publisher on Laptopop
Now that we know how to build a Docker image for Duckietown, letÕs put some code
in one of them. We will see how to write a simple ROS program with Python, but any
language supported by ROS should do it.

Open a terminal and go to the directory KW�PMQ�NPMEP?Kcreated above. In ROS, every
ROS node must belong to a ROSpackage. ROS packages are placed inside the directory
N?AI?ECQ in KW�PMQ�NPMEP?K. Let go ahead and create a directory called KW=N?AI?EC

inside N?AI?ECQ.

� KIBGP �N ��N?AI?ECQ�KW=N?AI?EC

A ROS package is simply a directory containing two special ýles, N?AI?EC�VKJ and
",?IC+GQRQ�RVR . So, letÕs turn the KW=N?AI?EC folder into a ROS package by creating
these two ýles.

Create the ýle N?AI?EC�VKJ inside KW=N?AI?EC using your favorite text editor and
place/adjust the following content inside it:

� N?AI?EC�
� L?KC� KW=N?AI?EC�� L?KC�
� TCPQGML� ����� �� TCPQGML�
� BCQAPGNRGML�
3FGQ�N?AI?EC�GQ�?�RCQR�DMP�1'��
�� BCQAPGNRGML�
� K?GLR?GLCPCK?GJ� �8.41=$, (+�$7 ,/+$�".,� � 8.41=%4++=- ,$ �� K?GLR?GLCP�
� JGACLQC� -MLC�� JGACLQC�

� @SGJBRMMJ=BCNCLB� A?RIGL�� @SGJBRMMJ=BCNCLB�
�� N?AI?EC�

Create the ýle ",?IC+GQRQ�RVR inside KW=N?AI?EC using your favorite text editor and
place/adjust the following content inside it:

AK?IC=KGLGKSK=PCOSGPCB	 5$12(.- �����

NPMHCAR	 KW=N?AI?EC

[LB=N?AI?EC 	 A?RIGL 1$04(1$# ".,/.-$-32
PMQNW

A?RIGL=N?AI?EC	

Now that we have a ROS package, we can create a ROS node inside it. Create the direc-
tory QPA inside KW=N?AI?EC and use your favorite text editor to create the ýle ��N?AI�

?ECQ�KW=N?AI?EC�QPA�KW=LMBC�NWand place the following code inside it:

�� � � �������� � �� � ��� �� �������!� � �������������

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md

���SQP�@GL�CLT�NWRFML

GKNMPRMQ
GKNMPRPMQNW
DPMKBSAIGCRMULGKNMPR#31.2
DPMKQRB=KQEQ�KQEGKNMPR2RPGLE

�	��� ,W-MBC	 #31.2
�

��� ==GLGR==	 QCJD LMBC=L?KC
�
��GLGRG?JGXC�RFC�#31.2�N?PCLR�AJ?QQ
QSNCP	 ,W-MBC QCJD
 � ==GLGR==	 LMBC=L?KC� LMBC=L?KC

��AMLQRPSAR�NS@JGQFCP
QCJD� NS@� PMQNW� /S@JGQFCP	 �AF?RRCP� 2RPGLE OSCSC=QGXC� ��

��� PSL	 QCJD
�
��NS@JGQF�KCQQ?EC�CTCPW���QCAMLB
P?RC � PMQNW� 1?RC	 �
 ���'X
���	� LMR PMQNW� GQ=QFSRBMUL	
�

KCQQ?EC� �'CJJM�6MPJB��
PMQNW� JMEGLDM	 �/S@JGQFGLE�KCQQ?EC��� �Q �� � KCQQ?EC

QCJD� NS@� NS@JGQF	 KCQQ?EC

P?RC� QJCCN	

�� ����
��� �� �==K?GL==� �
��APC?RC�RFC�LMBC
LMBC � ,W-MBC	 LMBC=L?KC� �KW=LMBC�

��PSL�LMBC
LMBC� PSL	

��ICCN�QNGLLGLE
PMQNW� QNGL	

And donÕt forget to declare the ýle KW=LMBC�NWas an executable, by running the com-
mand:

� AFKMB �V ��N?AI?ECQ�KW=N?AI?EC�QPA�KW=LMBC�NW

We now need to tell Docker we want this script to be the one executed when we run the
command BMAICP PSL ��� . In order to do so, open the ýle J?SLAF�QF and replace the
line

CAFM �3FGQ�GQ�?L�CKNRW�J?SLAF�QAPGNR��4NB?RC�GR�RM�J?SLAF�WMSP�?NNJGA?�
RGML��

with the following lines

� � �������� � �� � ��� �� �������!� � ������������� ��

PMQAMPC�
QJCCN��
PMQPSL�KW=N?AI?EC�KW=LMBC�NW

Let us now re-build the image

� BRQ BCTCJ @SGJB�D ��?PAF ?KB��

and run it

� BMAICP PSL �GR ��PK BSAIGCRMUL�KW�PMQ�NPMEP?K�T��?KB��

This will show the following message:

3FC�CLTGPMLKCLR�T?PG?@JC�5$'("+$=- ,$�GQ�LMR�QCR��4QGLE��@��B�A�B������
����JMEEGLE�RM��PMMR��PMQ�JME���D@���C�C��C���C��?DB������?A�������
PMQJ?SLAF�@��B�A�B��������JME
"FCAIGLE�JME�BGPCARMPW�DMP�BGQI�SQ?EC��3FGQ�K?W�R?IC�?UFGJC�
/PCQQ�"RPJ�"�RM�GLRCPPSNR
#MLC�AFCAIGLE�JME�[JC�BGQI�SQ?EC��4Q?EC�GQ � �&!�

QR?PRCBPMQJ?SLAF QCPTCPFRRN��� ��� � �� � � � ������� �
PMQ=AMKKTCPQGML� � �� � ��

24,, 18
� �������

/ 1 ,$3$12
� � PMQBGQRPM�IGLCRGA
� � PMQTCPQGML�� � �� � ��

-.#$2

?SRM�QR?PRGLELCU K?QRCP
NPMACQQ: K?QRCP<� QR?PRCBUGRF NGB : �� <
1.2=, 23$1=41(� FRRN��������������������

QCRRGLE� PSL=GB RM ��D@���C�C��C���C��?DB������?A������
NPMACQQ: PMQMSR��< � QR?PRCBUGRF NGB : �� <
QR?PRCBAMPCQCPTGAC:� PMQMSR<
: (-%. < : ���������� � ������ < � :� KW=LMBC< (LGRG?JGXGLE���
: (-%. < : ���������� � ������ < � /S@JGQFGLEKCQQ?EC� � 'CJJM 6MPJB��
: (-%. < : ���������� � ������ < � /S@JGQFGLEKCQQ?EC� � 'CJJM 6MPJB��
: (-%. < : ���������� � ������ < � /S@JGQFGLEKCQQ?EC� � 'CJJM 6MPJB��

CCONGRAONGRATULATULATIONS!TIONS! You just built and run your own Duckietown-compliant ROS

�	 � � �������� � �� � ��� �� �������!� � �������������

Z

publisher!

If you want to stop it, just use Ctrl + C .

2.3.2.3.RROS Publisher on DuckiebotOS Publisher on Duckiebot
Now that we know how to package a piece of software into a Docker image for Ducki-
etown, we can go one step further and write code that will run on the robot instead of
our laptop.

This part assumes that you have a Duckiebot up and running with hostname �"#���

� �� . Of course, you donÕt need to change the hostname to �"#��� �� , just replace
it with y our robot name in the instructions below. You can make sure that your robot is
ready by executing the command

� NGLE �"#��� �� �JMA?J

If you can ping the robot, you are good to go.

Before you start, you need to conýgure the Duckiebot to accept new code. This is nec-
essary because the Duckiebot by defaults runs only code released by the Duckietown
community. In order to conýgure the robot to accept custom code, run the following
command,

� BRQ BCTCJ U?RAFRMUCPQRMN�' �"#��� �� �JMA?J

NNotote:e:You need to do this every time you reboot your Duckiebot.

Let us go back to our node ýle KW=LMBC�NWand change the line:

KCQQ?EC� �'CJJM�6MPJB��

to,

KCQQ?EC� �'CJJM�DPMK �Q � � MQ� CLTGPML: �5$'("+$=- ,$� <

Since PMQAMPCis already running on the Duckiebot, we need to remove the following
lines from J?SLAF�QF :

PMQAMPC�
QJCCN��

We can now slightly modify the instructions for building the image so that the image
gets built directly on the robot instead of your laptop or desktop machine. Run the com-
mand:

� BRQ BCTCJ @SGJB�D ��?PAF ?PK��T� �' �"#��� �� �JMA?J

� � �������� � �� � ��� �� �������!� � ������������� �

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md

Z

As you can see, we changed two things, one is ��?PAF ?PK��T� which tells Docker to
build an image that will run on 1, architecture (which is the architecture the CPU on
the robot is based on), the second is�' �"#��� �� �JMA?J which tells Docker where
to build the image.

Once the image is built, we can run it on the robot by running the command:

� BMAICP �' �"#��� �� �JMA?J�PSL �GR ��PK ��LCR�FMQR BSAIGCRMUL�KW�
PMQ�NPMEP?K�T�

If everything worked as expected, you should see the following output,

3FC�CLTGPMLKCLR�T?PG?@JC�5$'("+$=- ,$�GQ�LMR�QCR��4QGLE��PGNJ@MR����
:(-%.<�:�����������������<��:�KW=LMBC<�(LGRG?JGXGLE���
:(-%.<�:�����������������<��/S@JGQFGLE�KCQQ?EC���'CJJM�DPMK�PGNJ@MR���
:(-%.<�:�����������������<��/S@JGQFGLE�KCQQ?EC���'CJJM�DPMK�PGNJ@MR���
:(-%.<�:�����������������<��/S@JGQFGLE�KCQQ?EC���'CJJM�DPMK�PGNJ@MR���

CCONGRAONGRATULATULATIONS!TIONS! You just built and run your ýrst Duckietown-compliant and
Duckiebot-compatible ROS publisher.

2.4.2.4.RROS Subscriber on DuckiebotOS Subscriber on Duckiebot
Now that we know how to create a simple publisher, letÕs create a subscriber which can
receive these messages.

Let us go back to our QPA folder and create a ýle called KW=LMBC=QS@QAPG@CP�NWwith
the following content:

�� � � �������� � �� � ��� �� �������!� � �������������

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md

���SQP�@GL�CLT�NWRFML

GKNMPRMQ
GKNMPRPMQNW
DPMKBSAIGCRMULGKNMPR#31.2
DPMKQRB=KQEQ�KQEGKNMPR2RPGLE

�	��� ,W-MBC	 #31.2
�

��� ==GLGR==	 QCJD LMBC=L?KC
�
��GLGRG?JGXC�RFC�#31.2�N?PCLR�AJ?QQ
QSNCP	 ,W-MBC QCJD
 � ==GLGR==	 LMBC=L?KC� LMBC=L?KC

��AMLQRPSAR�NS@JGQFCP
QCJD� QS@� PMQNW� 2S@QAPG@CP	 �AF?RRCP� 2RPGLE QCJD� A?JJ@?AI

��� A?JJ@?AI	 QCJD B?R?
�
PMQNW� JMEGLDM	 �(�FC?PB �Q � B?R?� B?R?

�� ����
��� �� �==K?GL==� �
��APC?RC�RFC�LMBC
LMBC � ,W-MBC	 LMBC=L?KC� �KW=LMBC=QS@QAPG@CP�

��ICCN�QNGLLGLE
PMQNW� QNGL	

Once again, donÕt forget to declare the ýle KW=LMBC=QS@QAPG@CP�NWas an executable,
by running the command:

� AFKMB �V ��N?AI?ECQ�KW=N?AI?EC�QPA�KW=LMBC=QS@QAPG@CP�NW

Then edit the following line from J?SLAF�QF

PMQPSL�KW=N?AI?EC�KW=LMBC�NW

to

PMQPSL�KW=N?AI?EC�KW=LMBC�NW�
PMQPSL�KW=N?AI?EC�KW=LMBC=QS@QAPG@CP�NW

Build the image on your Duckiebot again using

� BRQ BCTCJ @SGJB�D ��?PAF ?PK��T� �' ,8=1.!.3�JMA?J

Once the image is built, we can run it on the robot by running the command

� BMAICP �' ,8=1.!.3�JMA?J PSL �GR ��PK ��LCR�FMQR BSAIGCRMUL�KW�PMQ�
NPMEP?K�T�

� � �������� � �� � ��� �� �������!� � ������������� ��

Z

You should see the following output

:(-%.<�:�����������������<��:�KW=LMBC<�(LGRG?JGXGLE���
:(-%.<�:�����������������<��:�KW=LMBC=QS@QAPG@CP<�(LGRG?JGXGLE���
:(-%.<�:�����������������<��/S@JGQFGLE�KCQQ?EC���'CJJM�DPMK�PGNJ@MR���
:(-%.<�:�����������������<��/S@JGQFGLE�KCQQ?EC���'CJJM�DPMK�PGNJ@MR���
:(-%.<�:�����������������<��(�FC?PB�'CJJM�DPMK�PGNJ@MR��
:(-%.<�:�����������������<��/S@JGQFGLE�KCQQ?EC���'CJJM�DPMK�PGNJ@MR���

CCONGRAONGRATULATULATIONS!TIONS! You just built and run your ýrst Duckietown-compliant and
Duckiebot-compatible ROS subscriber.

As a fun exercise, open a new terminal and run (without stopping the other process

� BRQ QR?PR=ESG=RMMJQ�"#��� ��

and then inside it, run

� POR=EP?NF

Have you seen a graph like this before?

2.5.2.5.Launch fLaunch filesiles
You edited the J?SLAF�QF ýle to remove

PMQAMPC� when it was already running. What if there was something which starts

a newPMQK?QRCPwhen it doesnÕt exist?
You also added multiple PMQPSLcommands to run the publisher and subscriber. Now
imagine writing similar shell scripts for programming multiple r obot behaviors. Some
basic nodes such as a camera or a motor driver will be running in all oper ation scenar-
ios of your Duckiebot, but other nodes will be added/removed to run speciýc behaviors
(e.g. lane following with or without obstacle avoidance). You can think of this as an hi-
erarchy where certain branches are activated optionally.

You can obviously write a ÒmasterÓ J?SLAF�QF which executes other shell scripts for
heirarchies. How do you pass parameters between these scripts? Where do you store all
of them? What if you want to use packages created by other people?

ROS again saves the day by providing us with a tool that handles all this! This tool is
calledroslaunch.

In this section, you will see how to use a ROS launch ýle to start both the publisher and
subscriber together.

Create a folder calledJ?SLAF inside your package and then create a ýle inside the fold-
er called KSJRGNJC=LMBCQ�J?SLAFwith the following content

	� � � �������� � �� � ��� �� �������!� � �������������

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md
http://wiki.ros.org/roslaunch

Z

� J?SLAF�

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC�NW� L?KC� �KW=LMBC� MSR�
NSR� �QAPCCL� ��

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC=QS@QAPG@CP�NW�L?KC� �KW=LMBC=QS@�
QAPG@CP� MSRNSR� �QAPCCL� ��

�� J?SLAF�

Then replace the following lines insideJ?SLAF�QF ýle

PMQPSL�KW=N?AI?EC�KW=LMBC�NW�
PMQPSL�KW=N?AI?EC�KW=LMBC=QS@QAPG@CP�NW

with

PMQJ?SLAF�KW=N?AI?EC�KSJRGNJC=LMBCQ�J?SLAF

Build and run the image again like above. You should get the same result.

You can read more about how to interpret launch ýleshere

2.6.2.6.NNamespaces and Ramespaces and Remappingemapping
If you went through the above link on launch ýles, you might have come across the
terms namespaces and remapping. Understanding namespaces and remapping is very
crucial to working with large ROS software stacks.

Consider you have two Duckiebots - BML?JB and B?GQW. You want them to communi-
cate with each other so you use onePMQK?QRCPfor both the robots. You have two copies
of the same node running on each of them which grabs images from the camera and
publishes them on a topic called �GK?EC . Do you see a problem here? Would it not be
better if they were called �BML?JB�GK?EC and �B?GQW�GK?EC? Here BML?JB and B?GQW

are ROS namespaces.

What if you were dealing with a robot which has two cameras? The names�B?GQW�

A?KCP?=JCDR�GK?ECand �B?GQW�A?KCP?=PGEFR�GK?ECare deýnitely the way to go. You
should also be able to do this without writing a new Python ýle for the second camera.

LetÕs see how we can do this. First of all, we need to make sure that all the topics used
by your Duckiebot are within its namespace.

Edit the ��N?AI?ECQ�KW=N?AI?EC�J?SLAF�KSJRGNJC=LMBCQ�J?SLAF to look like this:

� � �������� � �� � ��� �� �������!� � ������������� 	�

http://wiki.ros.org/roslaunch/XML
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md

� J?SLAF�

� EPMSNLQ� ��	?PE�TCF
� �

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC�NW� L?KC� �KW=LMBC� MSR�
NSR� �QAPCCL� ��

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC=QS@QAPG@CP�NW�
L?KC� �KW=LMBC=QS@QAPG@CP�MSRNSR� �QAPCCL� ��

�� EPMSN�

�� J?SLAF�

Then edit the roslaunch command in ��J?SLAF�QF as follows:

PMQJ?SLAF�KW=N?AI?EC�KSJRGNJC=LMBCQ�J?SLAF�TCF���5$'("+$=- ,$

Build and run the image. Once again run POR=EP?NFlik e above. What changed?

As a next step, we need to ensure that we can launch multiple instances of the same
node with diÿerent names, and publishing topics corresponding to those names. For
example, running two camera nodes with names A?KCP?=JCDR and A?KCP?=PGEFR

respectively, publishing topics �KW=PM@MR�A?KCP?=JCDR�GK?ECand �KW=PM@MR�A?K�

CP?=PGEFR�GK?EC.

Notice how the LMBC tag in the launch ýle has a L?KC attribut e. You can have multiple
LMBCtags with diÿerent names for the same python node ýle. The name provided here
will override the name you give inside the python ýle for the node.

Edit the ��N?AI?ECQ�KW=N?AI?EC�J?SLAF�KSJRGNJC=LMBCQ�J?SLAF ýle to have two
publishers and two subscribers as below:

� J?SLAF�

� EPMSNLQ� ��	?PE�TCF
� �

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC�NW� L?KC� �KW=LMBC=�� MSR�
NSR� �QAPCCL� ��

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC�NW� L?KC� �KW=LMBC=�� MSR�
NSR� �QAPCCL� ��

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC=QS@QAPG@CP�NW�
L?KC� �KW=LMBC=QS@QAPG@CP=��MSRNSR� �QAPCCL� ��

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC=QS@QAPG@CP�NW�
L?KC� �KW=LMBC=QS@QAPG@CP=��MSRNSR� �QAPCCL� ��

�� EPMSN�

�� J?SLAF�

	� � � �������� � �� � ��� �� �������!� � �������������

Check POR=EP?NF. All communications are happening on one topic. You still cannot
diÿerentiate between topics being published by multiple nodes. Turns out doing that is
very simple. Open the ýle ��N?AI?ECQ�KW=N?AI?EC�QPA�KW=LMBC�NW and edit the dec-
laration of the publisher from

���
QCJD� NS@� PMQNW� /S@JGQFCP	 �AF?RRCP� 2RPGLE OSCSC=QGXC� ��

���

to

���
QCJD� NS@� PMQNW� /S@JGQFCP	 �YAF?RRCP� 2RPGLE OSCSC=QGXC� ��

���

All w e did was add a tilde(Y) sign in the beginning of the topic. Names that start with
a Y in ROS are private names. They convert the nodeÕs name into a namespace. Note
that since the nodes are already being launched inside the namespace of the robot, the
nodeÕs namespace would be nested inside it. Read more about private namespaceshere

Do this for the subsciber node as well. Run the experiment and observe POR=EP?NF

again. This time, switch the graph type from -MBCQ MLJWto -MBCQ�3MNGAQ 	?JJ
 and
uncheck 'GBC� #C?B QGLIQ and 'GBC� +C?D RMNGAQ. Play with these two ÒHideÓ op-
tions to see what they mean.

All looks very well organized, except that no nodes are speaking to any other node. This
is where the magic of remapping begins.

Edit the ��N?AI?ECQ�KW=N?AI?EC�J?SLAF�KSJRGNJC=LMBCQ�J?SLAF ýle to contain the
following:

� � �������� � �� � ��� �� �������!� � ������������� 	�

http://wiki.ros.org/Names

� J?SLAF�

� EPMSNLQ� ��	?PE�TCF
� �

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC�NW� L?KC� �KW=LMBC=�� MSR�
NSR� �QAPCCL� ��

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC�NW� L?KC� �KW=LMBC=�� MSR�
NSR� �QAPCCL� ��

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC=QS@QAPG@CP�NW�
L?KC� �KW=LMBC=QS@QAPG@CP=��MSRNSR� �QAPCCL� �

� PCK?N DPMK� �Y�AF?RRCP� RM� ���	?PE�TCF
�KW=LMBC=��AF?RRCP� ��
�� LMBC�

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC=QS@QAPG@CP�NW�
L?KC� �KW=LMBC=QS@QAPG@CP=��MSRNSR� �QAPCCL� �

� PCK?N DPMK� �Y�AF?RRCP� RM� ���	?PE�TCF
�KW=LMBC=��AF?RRCP� ��
�� LMBC�

�� EPMSN�

�� J?SLAF�

Check POR=EP?NF. Does it make sense?

Now, replace

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC=QS@QAPG@CP�NW�L?KC� �KW=LMBC=QS@�
QAPG@CP=�� MSRNSR� �QAPCCL� �

� PCK?N DPMK� �Y�AF?RRCP� RM� ���	?PE�TCF
�KW=LMBC=��AF?RRCP� ��
�� LMBC�

with

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC=QS@QAPG@CP�NW�L?KC� �KW=LMBC=QS@�
QAPG@CP=�� MSRNSR� �QAPCCL� �

� PCK?N DPMK� �Y�AF?RRCP� RM� �KW=LMBC=��AF?RRCP� ��
�� LMBC�

Does it still work? Why?

How about if you replace it with this:

� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC=QS@QAPG@CP�NW�L?KC� �KW=LMBC=QS@�
QAPG@CP=�� MSRNSR� �QAPCCL� �

� PCK?N DPMK� �Y�AF?RRCP� RM� ��KW=LMBC=��AF?RRCP� ��
�� LMBC�

	� � � �������� � �� � ��� �� �������!� � �������������

Z

How about this?

� PCK?N DPMK� �KW=LMBC=QS@QAPG@CP=��AF?RRCP�RM� �KW=LMBC=��AF?RRCP� ��
� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC=QS@QAPG@CP�NW�L?KC� �KW=LMBC=QS@�
QAPG@CP=�� MSRNSR� �QAPCCL� ��

Or this?

� PCK?N DPMK� �YKW=LMBC=QS@QAPG@CP=��AF?RRCP�RM� �YKW=LMBC=��AF?RRCP� ��
� LMBC NIE � �KW=N?AI?EC� RWNC� �KW=LMBC=QS@QAPG@CP�NW�L?KC� �KW=LMBC=QS@�
QAPG@CP=�� MSRNSR� �QAPCCL� ��

Can you explain why some of them worked, while some did not?

2.7.2.7.Multi-agMulti-agent Communicationent Communication
In this subsection, you will learn how t o communicate between your laptop and the
Duckiebot using ROS. Start by verifying that Portainer is running.

Next, ping your Duckiebot to ýnd its IP address:

� NGLE �"#��� �� �JMA?J

Note down the address. Next, ýnd the IP address of your computer. Note that you may
have multiple IP addresses depending on how many networks you are connected to. If
you have a Linux computer, you can ýnd your IP using:

� GDAML[E

From the output, extract the IP address of the interface from which you are connected
to your Duckiebot. For example, if you and your Duckiebot are both connected through
WiFi, ýnd your IP address from the WiFi connection.

Run the following command:

� BMAICP PSL �GR ��PK ��LCR FMQRBSAIGCRMUL�BR�PMQ�AMKKMLQ�B?DDW�
?KB�� �@GL�@?QF

Right now, you are inside a ROS-enabled container which is connected to the PMQK?Q�

RCP running on your laptop. But you want to connect to the PMQK?QRCPon your duck-
iebot. To do this, inside the container, run:

� CVNMPR1.2=, 23$1=41(�FRRN��� �"#��� ��#�� �������
� CVNMPR1.2=(/� �"#��

Replace �"#��� ��#�� and �"#�� from the IP addresses extracted above, in that or-

� � �������� � �� � ��� �� �������!� � ������������� 	�

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md

der. More information about these environment variableshere.

Now, run:

� PMQRMNGAJGQR

You should see topics from your Duckiebot appearing here. Viola! You have successful-
ly established connection between your laptop and Duckiebot through ROS!

Are you confused about the����� above? You should not be. This is simply the default
port number that ROS uses for communication. You can change it for any other free
port.

		 � � �������� � �� � ��� �� �������!� � �������������

/tmp/mcdp_tmp_dir-root/prince_renderz6c9th18/wiki.ros.org/ROS/EnvironmentVariables

Z

Z

Z

UUNITNIT C-3C-3

WWorking with logsorking with logs

Robotics is innately married to hardware. However, when we develop and test our ro-
botsÕ software, it is often the case that we donÕt want to have to waste time to test on
hardware after every small change. With bigger and more powerful robots, it might be
the case that a software can result in a robot actuation that breaks it or even endanger
human life! But if one can evaluate how a robot or a piece of code would behave before
deploying on the actual platform then quite some headaches can be prevented. That is
why working in simulation and fr om logs is so important in robotics. In this section
you will learn how to work with logs in ROS.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Laptop setup

RRequirequires:es:Docker poweruser skills

RRequirequires:es:Developer knowledge of ROS

RResults:esults:Reading and processing bag ýles

ContContentsents

Section3.1- Rosbag..6767

Section3.2- Rosbag: Recording ..6767

Section3.3- Rosbag Python API: Reading..6868

Section3.4- Rosbag Python API: Writing ..6868

Section3.5- Exercises..6868

3.1.3.1.RRosbagosbag
A bag is a ýle format in ROS for storing ROS message data. Bags, named so because
of their �@?E extension, have an important role in ROS. Bags are typically created by a
tool like PMQ@?E, which subscribes to one or more ROS topics, and stores the serialized
message data in a ýle as it is received. These bag ýles can also be played back in ROS to
the same topics they were recorded from, or even remapped to new topics.

Please go through this link for mor e information.

3.2.3.2.RRosbag: Rosbag: Recorecordingding
You can use the following command to record bag ýles

� PMQ@?EPCAMPB3./("=� 3./("=� 3./("=�

or simply

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md
http://wiki.ros.org/rosbag/Commandline
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md

Z

Z

Z

Z

� PMQ@?EPCAMPB�?

to record all messages being published.

3.3.3.3.RRosbag Python API: Rosbag Python API: Readingeading
The following code snippet is a basic usage of the PMQ@?EAPI to read bag ýles:

GKNMPRPMQ@?E
@?E � PMQ@?E� !?E 	 �RCQR�@?E�

��� RMNGA KQE R GL @?E� PC?B=KCQQ?ECQ	 RMNGAQ� : �AF?RRCP� �LSK@CPQ�<
�

���� KQE
@?E� AJMQC	

3.4.3.4.RRosbag Python API: Wosbag Python API: Writingriting
The following code snippet is a basic usage of the PMQ@?EAPI to create bag ýles:

GKNMPRPMQ@?E
DPMKQRB=KQEQ�KQEGKNMPR(LR�� 2RPGLE

@?E � PMQ@?E� !?E 	 �RCQR�@?E� �U�

��� �
Q � 2RPGLE	

Q� B?R? � �DMM�

G � (LR�� 	

G� B?R? � ��

@?E� UPGRC	 �AF?RRCP� Q

@?E� UPGRC	 �LSK@CPQ� G

���		� �
@?E� AJMQC	

3.5.3.5.ExExerercisescises
All containers in the exercises below should be run on your laptop, i.e. without �'

�"#��� �� �JMA?J .

ExExerercisecise17.17.RRecorecord bag fd bag fileile..
Using the following concepts,

¥ Getting data in and out of your container

¥ Communication between laptop and Duckiebot
create a Docker container on your laptop with a folder mounted on the container.

	� ! ������ � !��� � ����

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md

Z

You can use the image BSAIGCRMUL�BR�PMQ�AMKKMLQ�B?DDW�?KB��. This time, how-
ever, instead of exporting the 1.2=, 23$1=41(and 1.2=(/ after entering the con-
tainer, do it directly with the BMAICP PSL command. You already know it from here
(unknown r(unknown ref eef exx-dock-dockerer-en-envvvvar)ar)

errerroror (1 of 1)index
(00.0

(�BM�LMR�ILMU�UF?R�GQ�GLBGA?RCB�@W�RFC�JGLI���CVCP�
AGQC�CV�BMAICP�CLTT?P��

Location not known more precisely.

Created by function AFCAI=GD=?LW=FPCD=GQ=GLT?JGBin module
KABN=BMAQ�AFCAI=KGQQGLE=JGLIQ.

.
Run the lane following demo. Once your Duckiebot starts moving, record the cam-
era images and the wheel commands from your Duckiebot using PMQ@?Ein the con-
tainer you just created (the one with the folder mounted). To do that navigate to the
mounted folder using theAB command and then run

� PMQ@?EPCAMPB� �"#��� �� �A?KCP?=LMBC�GK?EC�AMKNPCQQCB
� �"#��� �� �UFCCJQ=BPGTCP=LMBC�UFCCJQ=AKB

Record the bag ýle for 30 seconds and then stop the recording using Ctrl + C . Use the
PMQ@?E GLDM6+(-$,(�@?E command to get some information about the bag ýle. If
the bag does not have messages from both the topics, check if you ran the container
correctly.

Stop the demo before proceeding.

ExExerercisecise18.18.Analyze bag fAnalyze bag filesiles..
Download this bag ýle.

Start by creating a new repository from the template, like in the previous section. In-
side, the ��N?AI?ECQ folder, create a python ýle for this exercise. You do not need to
create a ros package for this, however, you can still choose to do so. Since reading a
bag ýle does not require ROS, you can do this without setting the necessary environ-
ment variables. Using the following concepts,

¥ Getting data in and out of your container

¥ Creating a basic Duckietown ROS enabled Docker image

create a Docker image which can analyze bag ýles and produce an output similar to
the one shown below. The min, max, average, and median values printed are statis-
tics of the time diÿerence between two consecutive messages. The--- and -�-- are
just placeholders, eg. --- could be 100 and-�-- could be 0.05.

! ������ � !��� � ���� 	�

/tmp/mcdp_tmp_dir-root/prince_renderz6c9th18/errors.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/demo_lane_following.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md
https://www.dropbox.com/s/11t9p8efzjy1az9/example_rosbag_H3.bag?dl=1

Z

�RCQJ?�A?KCP?=LMBC�A?KCP?=GLDM�
LSK=KCQQ?ECQ��---
NCPGMB�

KGL��-�--
K?V��-�--
?TCP?EC��-�--
KCBG?L��-�--

�RCQJ?�JGLC=BCRCARMP=LMBC�QCEKCLR=JGQR�
LSK=KCQQ?ECQ��---
NCPGMB�

KGL��-�--
K?V��-�--
?TCP?EC��-�--
KCBG?L��-�--

�RCQJ?�UFCCJQ=BPGTCP=LMBC�UFCCJQ=AKB�
LSK=KCQQ?ECQ��---
NCPGMB�

KGL��-�--
K?V��-�--
?TCP?EC��-�--
KCBG?L��-�--

NNotote:e:Make sure to mount the folder containing the bag ýle to the Docker contain-
er, instead of copying it.

Run the same analysis with the bag ýle you recorded in the previous exercise.

ExExerercisecise19.19.PrProcessing bag focessing bag filesiles..
Use the bag ýle which you recorded earlier for this exercise. Using the following con-
cepts,

¥ Getting data in and out of your container

¥ Creating a basic Duckietown ROS enabled Docker image

¥ Converting between ROS Images and OpenCV Images

create a Docker image which can process a bag ýle. Essentially, you will extract some
data from a bag ýle, process it, and write the results to a new bag ýle. Once again,
create a new repository, and the necessary python ýle for this exercise inside the
��N?AI?ECQ folder. For the image message in the bag ýle, do the following:

¥ Extract the timestamp from the message

¥ Extract the image data from the message

¥ Draw the timestamp on top of the image

¥ Writ e the new image to the new bag ýle, with the same topic name, same time-
stamp, and the samemessage typeas the original message

The new bag ýle should be generated in the mounted folder.

To verify your results, create a docker container exactly like you did in the ýrst exer-

� ! ������ � !��� � ����

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md
http://wiki.ros.org/cv_bridge/Tutorials/ConvertingBetweenROSImagesAndOpenCVImagesPython
https://docs.opencv.org/2.4/modules/core/doc/drawing_functions.html#puttext
http://docs.ros.org/kinetic/api/sensor_msgs/html/msg/CompressedImage.html

cise of this section. Make sure you place your processed bag ýle in the folder being
mounted. Run the following command:

� PMQ@?ENJ?W /0.&(11('#%$) �@?E ��JMMN � �"#��� �� �A?K�
CP?=LMBC�GK?EC�AMKNPCQQCB���LCU=GK?EC�AMKNPCQQCB

In a new terminal, use QR?PR=ESG=RMMJQand run POR=GK?EC=TGCUinside it. Can you
see �LCU=GK?EC�AMKNPCQQCB?

Stop the PMQ@?E NJ?Wusing CTRL + C and now run the following command inside
the same container:

� PMQ@?ENJ?W /0.&(11('#%$) �@?E ��JMMN

Again, use QR?PR=ESG=RMMJQbut this time check � �"#��� �� �A?KCP?=LMBC�GK�

?EC�AMKNPCQQCB. WhatÕs going on? Why? What does the last part of the ýrst com-
mand do?

! ������ � !��� � ����
�

Z

Z

Z

UUNITNIT C-4C-4

RRobot behaobot behaviour with Rviour with ROSOS

In this section you will extend anearlier exerciseto work with ROS.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Laptop setup

RRequirequires:es:Duckiebot initialization

RRequirequires:es:Docker poweruser skills

RRequirequires:es:Developer knowledge of ROS

RResults:esults:Basic robot behavior with ROS

4.1.4.1.RROS based color detOS based color detectectoror

ExExerercisecise20.20.ConConvverting the color deterting the color detectector tor to Ro ROS nodesOS nodes..
Using the following concepts:

¥ Creating a basic Duckietown ROS Publisher

¥ Creating a basic Duckietown ROS Subscriber

¥ Launch Files

¥ Namespaces and remapping

¥ Multi agent communication

¥ Recording bag ýles

do the following:

¥ Create two repositories from the ROS template.

¥ Add all your python dependencies to the ýle ��BCNCLBCLAGCQ�NW�RVR

¥ In the ýrst one, add the code to extract images using a PiCamera and publish it
on a topic. This will run on your Duckiebot. The node should run using a launch ýle.
Remember to turn oÿ BSAIGC@MR�GLRCPD?AC(can exist under diÿerent names) and
any other container which can use the camera.

¥ In the second one, add the code to subscribe to that topic and extract color. Using
concepts from roslaunch, create two nodes in your �J?SLAF ýle. Note that you are
not allowed to have diÿerent Python ýles for each node. The ýrst node detects the
color red and the second detects yellow. You should useparams within y our LMBC

tag to let your detector know whether it is supposed to detect red/yellow. These
nodes will run on your laptop. Once again, pass the required environment variables
to connect your laptop to the rosmaster of your duckiebot using BMAICP�PSL .

¥ You should publish some debug images from within the color detection node.
These debug images should have rectangles drawn in the region where the colors are

�

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/04_robot_behaviour/00_robot_behaviour.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/laptop_setup.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/setup_duckiebot.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/04_robot_behaviour/00_robot_behaviour.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/04_robot_behaviour/00_robot_behaviour.md
http://wiki.ros.org/roslaunch/XML/param

detected. Note that we are not looking for perfect color detectors, as long as they pro-
duce reasonable output. You can draw multiple r ectangles in the image if the multi-
ple regions in the image have the requred color.

¥ If you are using QCLQMP=KQEQ�"MKNPCQQCB(K?EC, make sure that your image topic
names end with �AMKNPCQQCB. For example, instead of naming the topic �KW=GK?EC,
name it �KW=GK?EC�AMKNPCQQCB

¥ Record a bag ýle containing the original and debug images.

A sample debug image stream for the yellow color detector is shown here:

Figure 4.1.Sample Yellow Color Detector

� �� �� � ��� ���� � !��� ����
�

https://vimeo.com/364266236
https://vimeo.com/364266236

Z

PPARARTT DD

[RH4] Implementing Basic R[RH4] Implementing Basic Robot Behaobot Behaviorsviors

You are already a master of Docker and ROS and you can make small ROS programs
that run on your robot. This is pretty nice but does it mean that you need to write every-
thing from scratch if you want to change or improve an existing demo or functionality?
Not the least bit!

Adding functionality t o your Duckiebot while reusing the ROS nodes that are already
implemented is incredibly easy and intuitive. That is where ROS and Docker really
come in handy. In this module, we will do exactly that. We will use the already existing
ROS nodes that control the camera, wheels, and LEDs of your robot and will imple-
ment a Braitenberg vehicle controller on top of them. But ýrst, we will take a look at
how DuckietownÕs code is organized.

ContContentsents

UnitUnit DD-1-1 - DuckietDuckietown code structurown code structuree..7575

UnitUnit DD-2-2 - DevDeveloping new Duckiebot functionalityeloping new Duckiebot functionality..8080

�

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/00_title.md
https://en.wikipedia.org/wiki/Braitenberg_vehicle

Z

Z

UUNITNIT DD-1-1

DuckietDuckietown code structurown code structuree

In order to develop new functionality within the Duckiet own eco-system you need to
know how the existing code is structured. This module will intr oduce you to the top-
level structure and the references that can help you to ýnd out more.

While on the outside Duckietown seems to be all about a simple toy car with some
duckies on top, once you dive deeper you will ýnd out that it is much bigg er on the in-
side (just like a TARDIS). ItÕs not only about cars, but also boats and drones. And you
can run the same code on a real Duckiebot, in simulation, or in a competitive AI Dri-
ving Olympics environment. You can also use some of the dozens of projects done be-
fore. As we clearly cannot cover everything in a concise way, this module will inst ead
focus only on the code that runs on a Duckiebot during the standard demos, e.g. Lane
Following and Indeýnite Navigation.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Docker basics

RRequirequires:es:ROS basics

RResults:esults:Knowledge of the software architecture on a Duckiebot

ContContentsents

Section1.1- Main images and repositories..7575

Section1.2- Various conýgurations of the Duckietown codebase....................................7777

1.1.1.1.Main imagMain images and res and repositepositoriesories
You probably noticed three container and image names popping up when you were
running the demos, calibrating your Duckiebot, or developing some of the previous
exercises: BR�BSAIGC@MR�GLRCPD?AC, BR�A?P�GLRCPD?AC, and BR�AMPC. You probably
wonder why there are three of these and what each one of them does?

LetÕs ýrst look at the bigger picture: The container hierarchy in Duckietown.

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md

Figure 1.1.Docker image hierarchy

As you can see in the above image, all three of the containers actually inherit the same
container. Recall that ÔinheritanceÕ in a Docker images means that the ÔchildÕ image has
a %1., statement with the ÔparentÕ image in its Dockerýle.

The image from which everything starts is PMQ�IGLCRGA�PMQ�@?QC�VCLG?J. It is an oþ-
cial ROS image that is conýgured to work smoothly with ROS Kinetic. Even though this
image is already extremely powerful, it is not well suited to directly work on a Duck-
iebot. Therefore, we add a few additonal components and conýgure it which results in
BSAIGCRMUL�BR�PMQ�IGLCRGA�@?QC.

The BSAIGCRMUL�BR�PMQ�IGLCRGA�@?QCimage has everything you need in order to start
developing code that directly works on your Duckiebot. However, as there are a few
components that all Duckietown ROS nodes share, it is convient to package them in
an image. These are BSAIGCRMUL�SRGJQ(a library with a number of useful functions),
BSAIGCRMUL=KQEQ(a ROS package that contains all the ROS message types used in
Duckietown), and #31.2 . #31.2 is a ÔmotherÕ node for all other nodes in Duckietown.
You have already seen it while working with publishers and subscribers inRH3, but we
will look at it in mor e detail soon.

We ýnally can focus on BR�BSAIGC@MR�GLRCPD?AC, BR�A?P�GLRCPD?AC, and BR�AMPC.
The ýrst, BR�BSAIGC@MR�GLRCPD?AC, contains all the hardware drivers you need to op-
erate your Duckiebot. In particular these are the drivers for the camera (in the A?K�

CP?=BPGTCPpackage), the ones for the motors (UFCCJQ=BPGTCP), and the LED drivers
(JCB=CKGRRCP). Thanks to these nodes, you donÕt need to interact with low level code
to control your Duckiebot. Instead, you can simply use the convenient ROS topics and
services provided by these nodes.

The BR�A?P�GLRCPD?AC image provides additional basic functionality that is not on
hardware level. It is all you need to be able to drive your Duckiebot around, in partic-
ular the parts that handle the commands sent by a (virtual) joystick (theHMW=K?NNCP

package) and the forward and inverse kinematics that convert the desired robot move-
ment to wheel commands (B?ES=A?P package). It might not be immediately clear at
ýrst why these are not part of BR�BSAIGC@MR�GLRCPD?ACor BR�AMPC. In some use cases,
e.g. for the demos or controlling a robot via a joystick, it is beneýcial to have these two

	 � �������!� � ���� � ���������

Z

Z

Z

packages. For others, e.g. when deploying a completely diÿerent pipeline, e.g. end-to-
end reinforcement learning, one would prefer to interact directly with the drivers. We
will see more examples of use cases shortly.

The BR�AMPC image provides all the high level robot behavior that you observe when
running a demo. The image processing pipeline, decision-making modules, lane and
intersection contollers, and many others reside there.

If you are curious to see all the ROS packages available in each of these images, you can
check out the corresponding GitHub repositories:

NNotote:e:Make sure to look at the B?DDWbranches of these repositories!

¥ BR�PMQ�IGLCRGA�@?QC

¥ BR�PMQ�AMKKMLQ

¥ BR�BSAIGC@MR�GLRCPD?AC

¥ BR�A?P�GLRCPD?AC

¥ BR�AMPC

As you will see in the nodes, thereÕs a lot of inline documentation provided. You can
also access ithere in a more readable form.

NNotote:e: Unfortunately, for the moment only BR�PMQ�AMKKMLQ, BR�BSAIGC@MR�GLRCP�

D?AC, and BR�A?P�GLRCPD?AC are documented. We are working on providing similar
level of documentation for BR�AMPC as well.

1.2.1.2.VVarious confarious configurigurations of the Duckietations of the Duckietown codebaseown codebase
As we already mentioned, the Duckietown codebase can be used in various conýgura-
tions: on a physical robot, in simulation, as an AI Driving Olympics submission, etc.
Depending on how you want to deploy or use your code, you will be using diÿerent
Docker images. Here we will take a look at a some of the most common use cases.

1)1) Driving with a (virtual) joystickDriving with a (virtual) joystick

If you only want to drive your Duckiebot around, you need the HMW=K?NNCPnode that
translates the joystick)MW messages to car command messages, the IGLCK?RGAQnode
that in turn converts these to wheel command messages, and theUFCCJQ=BPGTCPnode
that controls the motors. So theBR�BSAIGC@MR�GLRCPD?ACand BR�A?P�GLRCPD?AC im-
ages are enough.

Figure 1.2.Driving with a (virtual) joystick

2)2) Driving thrDriving thr ough the Dashboarough the Dashboardd

As you have alreadyseen, the Dashboard and the Compose interface also provide man-
ual driving functionality . For this, one needs the same images as before, of course to-

� �������!� � ���� � ���������

https://github.com/duckietown/dt-ros-kinetic-base/tree/daffy
https://github.com/duckietown/dt-ros-kinetic-base/tree/daffy
https://github.com/duckietown/dt-ros-commons/tree/daffy
https://github.com/duckietown/dt-ros-commons/tree/daffy
https://github.com/duckietown/dt-duckiebot-interface/tree/daffy
https://github.com/duckietown/dt-duckiebot-interface/tree/daffy
https://github.com/duckietown/dt-car-interface/tree/daffy
https://github.com/duckietown/dt-car-interface/tree/daffy
https://github.com/duckietown/dt-core/tree/daffy
https://github.com/duckietown/dt-core/tree/daffy
http://rosapi.duckietown.p-petrov.com/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md

Z

Z

Z

gether with the Dashboard image itself:

Figure 1.3.Driving thr ough the Dashboard

3)3) RRunning a demo on a Duckiebotunning a demo on a Duckiebot

Running a demo requires to drive around together with the high-level processing and
logic that reside in theBR�AMPC image:

Figure 1.4.Running a demo on a Duckiebot

4)4) RRunning a demo in simulationunning a demo in simulation

A demo can also be executed in simulation. In this case, instead of using the hardware
drivers BR�BSAIGC@MR�GLRCPD?ACprovides, we substitute them with the simulator in-
terface:

Figure 1.5.Running a demo in simulation

5)5) EEvvaluating AIDO submissions in simulationaluating AIDO submissions in simulation

An AI Driving Olympics submission is essentially a container that receives image data
and outputs wheel commands. Therefore, it can replace the BR�A?P�GLRCPD?AC and
BR�AMPC images and still use the same simulator framework. This can also be done in
the cloud, and that is exactly how AIDO submissions get evaluated in simulation on
the challenges server.

� � �������!� � ���� � ���������

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md
https://challenges.duckietown.org/

Z

Figure 1.6.Evaluating AIDO submission in simulation

6)6) EEvvaluating AIDO submissions on a Duckiebotaluating AIDO submissions on a Duckiebot

The same submission image, with not a single change, can be also tested on a real
Duckiebot! Simply substitute the simulator with the BSAIGC@MR�GLRCPD?AC. As the con-
tainers donÕt need to run on the same device, we can also use much powerful comput-
ers (also state-of-the-art GPUs) when testing submissions. This is the way that AIDO
submissions get evaluated in Robotariums. In this way, even if you donÕt have a Duck-
iebot, you can develop your submission in simulation, then submit it to be evaluated
in simulations on the challenges server, and if it performs well, you can request remote
evaluation on a real Duckiebot in a Robotarium!

Figure 1.7.Evaluating AIDO submission on a Duckiebot

� �������!� � ���� � ���������
�

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md

Z

Z

Z

UUNITNIT DD-2-2

DevDeveloping new Duckiebot functionalityeloping new Duckiebot functionality

You will now learn how t o add your own code to already existing Duckietown codebase.
In particular you will learn how t o interface your nodes with the provided ones such
that you donÕt have to rewrite already existing modules. Then, you will be able to mas-
ter these skills by developing Braitenberg vehicle behavior on Duckiebots.

Kðï éñ÷øõ÷ ûðø û ùëóêóëè õíûîô

RRequirequires:es:Docker basics

RRequirequires:es:ROS basics

RRequirequires:es:Knowledge of the software architecture on a Duckiebot

RResults:esults:Skills on how to develop new code as part of the Duckietown framework

ContContentsents

Section2.1- Exploring DTROS..8080

Section2.2- Basic Braitenberg vehicle behavior ..8181

2.1.2.1.Exploring DExploring DTRTROSOS
The #31.2 class is often referred to as the Ômother nodeÕ in Duckietown. It provides
some very useful functionalities that the other nodes inherit. It has modiýed ROS Sub-
scribers and Publishers which can be switched on and oÿ. It also provides an interface
to the ROS parameters of the node using it which allows dynamical changes while the
node is running. For this reason we strongly suggest you to always base your nodes on
#31.2 . Instead of explaining all the details of #31.2 , we instead invite you to investi-
gate them yourself.

NNotote:e:Currently BR�AMPC is not using #31.2 . Nevertheless, soon the nodes there will
be converted to the #31.2 framework as well.

ExExerercisecise21.21.Exploring how DExploring how DTRTROS wOS worksorks..
First, take a look at the documentation of #31.2 here. Find out how its function-
alities are implemented by looking at their implementation in the BR�PMQ�AMKKMLQ

repository here. In particular, make sure you can answer the following list of ques-
tions. To do that, it might be helpful to see how #31.2 is being used in some of
the other nodes. Take a look atA?KCP?=LMBC, the UFCCJQ=BPGTCP=LMBC, and the other
nodes in BR�BSAIGC@MR�GLRCPD?ACand BR�A?P�GLRCPD?AC.

¥ How do you initialize the #31.2 parent class? How do you start your node? What
does PMQNW�QNGL	
 do? (Hint: look at the nodes inBR=BSAIGC@MR=GLRCPD?AC)

¥ When should you redeýne the ML2FSRBMULmethod? Why do you still need to call

��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md
https://en.wikipedia.org/wiki/Braitenberg_vehicle
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md
http://rosapi.duckietown.p-petrov.com/repositories/dt-ros-commons/docs/source/packages/duckietown.html#duckietown.DTROS
https://github.com/duckietown/dt-ros-commons/tree/daffy/packages/duckietown/include/duckietown
https://github.com/duckietown/dt-duckiebot-interface/blob/daffy/packages/camera_driver/src/camera_node.py
https://github.com/duckietown/dt-duckiebot-interface/blob/daffy/packages/wheels_driver/src/wheels_driver_node.py

Z

the ML2FSRBMULmethod of #31.2 ? (Hint: look at the nodes in BR=BSAIGC@MR=GLRCP�

D?AC and at the official ROS documentation)

¥ What is the diÿerence between the #31.2 JME method and the native ROS log-
ging?

¥ How are the parameters dynamically updated? What can you do to the frequency
at which this happens? Why is SNB?RC/?P?KCRCPQcalled immediately after initializ-
ing the parameters? What is the use of theN?P?KCRCPQ"F?LECBattribut e? (Hint: see
the implementation in A?KCP?=LMBC)

¥ Should you ever use PMQNW�ECR=N?P?K	
 in your node? If not, how should you
access a ROS parameter? How do you initialize the parameters of your node? (Hint:
look at the nodes in BR=BSAIGC@MR=GLRCPD?ACand at the official ROS documenta-
tion)

¥ What does the YQUGRAFservice do? How can you use it? What is the beneýt of
using it?

¥ What is the diÿerence between the native ROS Subscriber and Publisher and#3�

/S@JGQFCPand #32S@QAPG@CP?

2.2.2.2.Basic BrBasic Braitaitenberg venberg vehicle behaehicle behaviorvior
Through a series of exercises you will implement a very basic brightness- and color-
based controller for your Duckiebot that can result in a surprisingly advanced robot be-
havior. In his book Vehicles: Experiments in Synthetic Psychology, Valentino Braiten-
berg describes some extremely basic vehicle designs that are capable of demonstrating
complex behaviors. By using only a pair of ÔsensorsÕ that can only detect brightness, two
motors, and direct links between the sensors and the motors, these vehicles can exhibit
love, aggression, fear, foresight and many other complex traits.

Figure 2.1. Avoiding and attracting Braitenberg behavior (illustr ation from [Thomas
Schoch](https://commons.wikimedia.org/wiki/File:Br aitenberg_Vehicle_2ab.png))

In the image above, the light intensity detected by a sensor is used proportionally to
control a motor. Depending on whether each sensor is connected to the motor on the
same or the opposite side, respectively avoiding or attracting behavior can be observed.
These behaviors can further be combined if the robot also detects the color of the light.

HereÕs an example video of how this Braitenberg behavior would look lik e on Duck-
iebots. When the light a Duckiebot sees is green, it has attracting behavior. Otherwise,

� � ������� � ��! �� ������ �� � �����������" ��

https://github.com/duckietown/dt-duckiebot-interface/blob/daffy/packages/camera_driver/src/camera_node.py
https://github.com/duckietown/dt-duckiebot-interface/blob/daffy/packages/camera_driver/src/camera_node.py
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md

Z

it will be avoiding. By the end of this series of exercises you will be able to create similar
Duckiebot controllers. Note that while this is recorded in a dark room, with a few smart
tricks you can also make your robots work in well-lit spaces.

Figure 2.2

ExExerercisecise22.22.AAvvoiding Broiding Braitaitenberg venberg vechiclesechicles..
Using everything you have learnt so far, create a ROS node that implements the
avoiding Braitenberg behavior. You should run this ROS node in a container running
on your Duckiebot. Here are some details and suggestions you might want to take
into account:

¥ Use the BR�BSAIGC@MR�GLRCPD?ACand all the drivers it provides. In particular,
you will need to subscribe to the images that the A?KCP?=LMBCpublishes and to pub-
lish wheel commands to UFCCJ=BPGTCP=LMBC. To do that simply make sure that the
BR�BSAIGC@MR�GLRCPD?ACcontainer is running. Then, whenever you start the con-
tainer with your code and ��LCR FMQR (why?), they will share their ROS Master, so
that your subscribers and publishers can ýnd each other.

¥ Use the nodes inBR�BSAIGC@MR�GLRCPD?ACas a reference for code and documen-
tation style. You will ýnd a number of useful code snippets there.

¥ Use theROS template and create your package and node there. DonÕt forget to
add the N?AI?EC�VKJ and ",?IC+GQRQ�RVR ýles, and to make your Python code exe-
cutable, as explained before.

¥ Your controller needs to run in r eal time with a frequency of at least 10-12 Hz.
Therefore, processing the input image at its full resolution might not be possible and
you should consider reducing it. A neat way to do this is to change the conýguration
parameters of the A?KCP?=LMBCrunning in BR�BSAIGC@MR�GLRCPD?AC. In the tem-
plate node code below that is already done for the exposure mode. Consult theROS
API docsfor the "?KCP?-MBC class if you are not sure about which parameters you
can change.

¥ For now ignore the color that your bot observes, focus only on the brightness
of the image on its left and right side. If you still want to change the color of the
LEDs, use theQCR=N?RRCPLservice provided by the JCB=CKGRRCP=LMBC. Its use is al-
so documented on theROS API docs. You do not need to call this service from inside
your Python ýle. You would need to create a Docker container on your Duckiebot
using BSAIGCRMUL�BR�BSAIGC@MR�GLRCPD?AC�B?DDWas the image (why?) to run the
required command. What other arguments should you use while creating this con-
tainer?

�� � � ������� � ��! �� ������ �� � �����������"

https://vimeo.com/365020910
https://vimeo.com/365020910
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md
https://github.com/duckietown/template-ros
http://rosapi.duckietown.p-petrov.com/repositories/dt-duckiebot-interface/docs/source/packages/camera_driver.html#cameranode
http://rosapi.duckietown.p-petrov.com/repositories/dt-duckiebot-interface/docs/source/packages/camera_driver.html#cameranode
http://rosapi.duckietown.p-petrov.com/repositories/dt-duckiebot-interface/docs/source/packages/led_emitter.html#ledemitternode

¥ If your Duckiebot keeps on moving even after you stop your node, you will have
to edit the provided ML2FSRBMULmethod. Make sure that the last commands your
node publishes to UFCCJ=BPGTCP=LMBCare zero.

¥ You will need to publish 6FCCJQ"KB2R?KNCBmessages to UFCCJ=BPGTCP=LMBC.
You can see the message structure here.

¥ The template loads the kinematics calibration on your Duckiebot so you donÕt
need to worry about trimming your Braitenberg controller. Simply use the provided
QNCCB3M"KBmethod apply gain, trim, and the motor constant to your wheel com-
mands. However, in order for that to happen you need to make sure to mount the
�B?R? folder of your Duckiebot, where all calibrations are stored, to your container.
To do that, just add�T��B?R?��B?R? to your Docker run.

¥ You can also make use of theBRQ BSAIGC@MR BCKMcommand instead of BMAICP

PSL. It will mount the �B?R? folder, setup your network and ROS environment vari-
ables, and give you access to the devices you need. To run this, simply use BRQ BSAI�

GC@MR BCKM ��BSAIGC@MR=L?KC������� ��#��� ��BCKM=L?KC ����#���

��N?AI?EC=L?KC � �� ��#��� ��GK?EC�:(, &$< .

This command will start the #$,.=- ,$�J?SLAF launch ýle in the / "* &$=- ,$

package from the ���� Docker image on the #4"*($!.3=- ,$ Duckiebot. Make
sure that you ýrst build you image on the Duckiebot!

¥ Once you have ýnished this exercise, you should have a Duckiebot which goes
towards the left if your program senses that the right side has more brightness, and
vice versa.

TTemplatemplate:e:

� � ������� � ��! �� ������ �� � �����������" ��

https://github.com/duckietown/dt-ros-commons/blob/daffy/packages/duckietown_msgs/msg/WheelsCmdStamped.msg

���SQP�@GL�CLT�NWRFML

GKNMPRAT�
GKNMPRLSKNW?Q LN
GKNMPRMQ
GKNMPRPMQNW
GKNMPRW?KJ

DPMKBSAIGCRMULGKNMPR#31.2
DPMKQCLQMP=KQEQ�KQEGKNMPR"MKNPCQQCB(K?EC
DPMKBSAIGCRMUL=KQEQ�KQEGKNMPR6FCCJQ"KB2R?KNCB

�	��� !P?GRCL@CPE-MBC	 #31.2
�
���!P?GRCL@CPE�!CF?TGMSP

3FGQ�LMBC�GKNJCKCLRQ�!P?GRCL@CPE�TCFGAJC�@CF?TGMP�ML�?�#SAIGC@MR�

 PEQ�
LMBC=L?KC�	�M@H�>QRP>
��?�SLGOSC�BCQAPGNRGTC�L?KC�DMP�RFC

LMBC
RF?R�1.2�UGJJ�SQC

"ML[ESP?RGML�
YE?GL�	�M@H�>\M?R>
��QA?JGLE�D?ARMP�?NNJGCB�RM�RFC�BCQGPCB

TCJMAGRW�R?ICL�DPMK�RFC�PM@MR�QNCAG[A�IGLCK?RGAQ
A?JG@P?RGML

YRPGK�	�M@H�>\M?R>
��RPGKKGLE�D?ARMP�RF?R�GQ�RWNGA?JJW�SQCB
RM�MDDQCR�BGDDCPCLACQ�GL�RFC�@CF?TGMSP�MD�RFC�JCDR�?LB
PGEFR�KMRMPQ�GR�GQ�PCAMKKCLBCB�RM�SQC�?�T?JSC�RF?R�PC�

QSJRQ
GL�RFC�PM@MR�KMTGLE�GL�?�QRP?GEFR�JGLC�UFCL�DMPU?PB�AMK�

K?LB
GQ�EGTCL�R?ICL�DPMK�RFC�PM@MR�QNCAG[A�IGLCK?RGAQ�A?JG@P?�

RGML
Y@?QCJGLC�	�M@H�>\M?R>
��RFC�BGQR?LAC�@CRUCCL�RFC�RUM�UFCCJQ

MD�RFC�PM@MR�R?ICL�DPMK�RFC�PM@MR�QNCAG[A�IGLCK?RGAQ
A?JG@P?RGML

YP?BGSQ�	�M@H�>\M?R>
��P?BGSQ�MD�RFC�UFCCJ�R?ICL�DPMK�RFC
PM@MR�QNCAG[A�IGLCK?RGAQ�A?JG@P?RGML

YI�	�M@H�>\M?R>
��KMRMP�AMLQR?LR�?QQSKCB�COS?J�DMP�@MRF
KMRMPQ�R?ICL�DPMK�RFC�PM@MR�QNCAG[A�IGLCK?RGAQ�A?JG@P?�

RGML
YJGKGR�	�M@H�>\M?R>
��JGKGRQ�RFC�[L?J�AMKK?LBQ�QCLR�RM�RFC

KMRMPQ�R?ICL�DPMK�RFC�PM@MR�QNCAG[A�IGLCK?RGAQ�A?JG@P?�
RGML

2S@QAPG@CP�
YGK?EC�AMKNPCQQCB�	�M@H�>"MKNPCQQCB(K?EC>
��3FC�?AOSGPCB�A?K�

CP?
GK?ECQ

/S@JGQFCP�
YUFCCJQ=AKB�	�M@H�>BSAIGCRMUL=KQEQ�KQE�6FCCJQ"KB2R?KNCB>
��3FC

�� � � ������� � ��! �� ������ �� � �����������"

Z

Z

ExExerercisecise23.23.AAtttrtracting Bracting Braitaitenberg venberg vechiclesechicles..
You should be able to change the avoiding behavior of your robot into an attracting
one by editing just a few lines of code. Give it a try! Once you have ýnished this ex-
ercise, you should have a Duckiebot which goes towards the right if your program
senses that the right side has more brightness, and vice versa.

ExExerercisecise24.24.Combined behaCombined behavior Brvior Braitaitenberg venberg vechiclesechicles..
Add a color detector to your Braitenberg controller node. If your Duckiebot sees
green light (perhaps of a diÿerent Duckiebot) it should be attracted to it, otherwise
it should be repelled by it.

If you have more than one robot, try to run your controller on a few of them. Set
some to have green LEDs, and some red. Do you see complex behavior emerging?
Changing the color of the LEDs can be done with theQCR=N?RRCPLservice provided
by the JCB=CKGRRCP=LMBCin BR�BSAIGC@MR�GLRCPD?AC. It is documented on theROS
API docs.

Can you devise even more complex behavior and interactions?

� � ������� � ��! �� ������ �� � �����������" ��

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md
http://rosapi.duckietown.p-petrov.com/repositories/dt-duckiebot-interface/docs/source/packages/led_emitter.html#ledemitternode
http://rosapi.duckietown.p-petrov.com/repositories/dt-duckiebot-interface/docs/source/packages/led_emitter.html#ledemitternode

	Hands-on Robotics Development using Duckietown
	[RH1] Connecting and operating a Duckiebot
	Assembly duckumentation
	Assembling the Duckiebot
	Duckiebot assembly

	Terminal basics
	Using a terminal
	Using the Duckietown Shell

	Duckiebot Setup
	Initialization
	Make your Duckiebot move
	See what your Duckiebot sees
	Calibration
	Camera calibration
	Calibration

	Wheel calibration

	Networking basics
	Why do we care about networking in the first place?
	How do computer networks work?
	Network utilities
	Ping
	NMap

	Connecting to your Duckiebot
	SSH
	SSH keys

	Docker basics
	What’s so special about containerization?
	What is it in a Docker container?
	Working with Docker images
	Working with containers

	Basic Duckiebot operation
	Remote connection with a browser and an interface
	Using the Dashboard
	Using Portainer

	Starting a demo using the DT shell
	Try out the lane-following demo

	[RH2] Basic Development
	Git and GitHub
	Learning git
	Git tutorial

	What is github
	Being a good git citizen
	Commits
	Branches, forks, pull request and peer review

	Python programs and environments
	Define a basic project structure
	Run a basic program on your Laptop
	Run a basic program on your Duckiebot
	Install dependencies using package managers (e.g., apt, pip)
	Basic NumPy program

	Become a Docker Power-User
	Getting data in and out of your container
	Docker volume mounting

	Docker and networking
	Handling devices
	Other fancy option
	Examples

	AIDO submissions
	Getting started
	Setup your account and software

	Make a simple submission
	Make a simple submission

	Customize a solution

	Creating Docker containers
	Where do Docker containers come from?
	Environment variables and Docker containers
	Guide to the Dockerfile keywords
	Creating your first functional Docker image
	Creating a color detector in Docker

	Pushing to DockerHub

	[RH3] Advanced Software Development
	Introduction to ROS
	Why ROS?
	Basics of ROS
	Installation (Optional)
	ROS Tutorials
	Additional Reading

	Development in the Duckietown infrastructure
	Basic Project Structure
	ROS Publisher on Laptop
	ROS Publisher on Duckiebot
	ROS Subscriber on Duckiebot
	Launch files
	Namespaces and Remapping
	Multi-agent Communication

	Working with logs
	Rosbag
	Rosbag: Recording
	Rosbag Python API: Reading
	Rosbag Python API: Writing
	Exercises
	Record bag file
	Analyze bag files
	Processing bag files

	Robot behaviour with ROS
	ROS based color detector
	Converting the color detector to ROS nodes

	[RH4] Implementing Basic Robot Behaviors
	Duckietown code structure
	Main images and repositories
	Various configurations of the Duckietown codebase
	Driving with a (virtual) joystick
	Driving through the Dashboard
	Running a demo on a Duckiebot
	Running a demo in simulation
	Evaluating AIDO submissions in simulation
	Evaluating AIDO submissions on a Duckiebot

	Developing new Duckiebot functionality
	Exploring DTROS
	Exploring how DTROS works

	Basic Braitenberg vehicle behavior
	Avoiding Braitenberg vechicles
	Attracting Braitenberg vechicles
	Combined behavior Braitenberg vechicles

